DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metal-free class Ie ribonucleotide reductase from pathogens initiates catalysis with a tyrosine-derived dihydroxyphenylalanine radical

Abstract

All cells obtain 2'-deoxyribonucleotides for DNA synthesis through the activity of a ribonucleotide reductase (RNR). The class I RNRs found in humans and pathogenic bacteria differ in (i) use of Fe(II), Mn(II), or both for activation of the dinuclear-metallocofactor subunit, β; (ii) reaction of the reduced dimetal center with dioxygen or superoxide for this activation; (iii) requirement (or lack thereof) for a flavoprotein activase, NrdI, to provide the superoxide from O2; and (iv) use of either a stable tyrosyl radical or a high-valent dimetal cluster to initiate each turnover by oxidizing a cysteine residue in the α subunit to a radical (Cys•). The use of manganese by bacterial class I, subclass b-d RNRs, which contrasts with the exclusive use of iron by the eukaryotic Ia enzymes, appears to be a countermeasure of certain pathogens against iron deprivation imposed by their hosts. Here, we report a metal-free type of class I RNR (subclass e) from two human pathogens. The Cys• in its α subunit is generated by a stable, tyrosine-derived dihydroxyphenylalanine radical (DOPA•) in β. The three-electron oxidation producing DOPA• occurs in Escherichia coli only if the β is coexpressed with the NrdI activase encoded adjacently in the pathogen genome. Wemore » conclude the independence of this new RNR from transition metals, or the requirement for a single metal ion only transiently for activation, may afford the pathogens an even more potent countermeasure against transition metal-directed innate immunity.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [2];  [2];  [3];  [3];  [1];  [3]; ORCiD logo [1];  [2];  [1];  [1];  [1];  [1]
  1. Pennsylvania State Univ., University Park, PA (United States)
  2. Univ. of Pennsylvania, Philadelphia, PA (United States)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
Searle Scholars Program; National Institutes of Health (NIH); USDOE Office of Science (SC); National Cancer Institute (NCI); National Institute of General Medical Sciences (NIGMS); Michigan Economic Development Corporation and Michigan Technology Tri-Corridor
OSTI Identifier:
1499708
Grant/Contract Number:  
GM119707; GM116353; AC02-06CH11357; ACB-12002; AGM-12006; 1S10OD012289-01A1; 085P1000817
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 115; Journal Issue: 40; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES; DNA biosynthesis; semiquinone; DOPA

Citation Formats

Blaesi, Elizabeth J., Palowitch, Gavin M., Hu, Kai, Kim, Amelia J., Rose, Hannah R., Alapati, Rahul, Lougee, Marshall G., Kim, Hee Jong, Taguchi, Alexander T., Tan, Kong Ooi, Laremore, Tatiana N., Griffin, Robert G., Krebs, Carsten, Matthews, Megan L., Silakov, Alexey, Bollinger Jr., J. Martin, Allen, Benjamin D., and Boal, Amie K. Metal-free class Ie ribonucleotide reductase from pathogens initiates catalysis with a tyrosine-derived dihydroxyphenylalanine radical. United States: N. p., 2018. Web. doi:10.1073/pnas.1811993115.
Blaesi, Elizabeth J., Palowitch, Gavin M., Hu, Kai, Kim, Amelia J., Rose, Hannah R., Alapati, Rahul, Lougee, Marshall G., Kim, Hee Jong, Taguchi, Alexander T., Tan, Kong Ooi, Laremore, Tatiana N., Griffin, Robert G., Krebs, Carsten, Matthews, Megan L., Silakov, Alexey, Bollinger Jr., J. Martin, Allen, Benjamin D., & Boal, Amie K. Metal-free class Ie ribonucleotide reductase from pathogens initiates catalysis with a tyrosine-derived dihydroxyphenylalanine radical. United States. https://doi.org/10.1073/pnas.1811993115
Blaesi, Elizabeth J., Palowitch, Gavin M., Hu, Kai, Kim, Amelia J., Rose, Hannah R., Alapati, Rahul, Lougee, Marshall G., Kim, Hee Jong, Taguchi, Alexander T., Tan, Kong Ooi, Laremore, Tatiana N., Griffin, Robert G., Krebs, Carsten, Matthews, Megan L., Silakov, Alexey, Bollinger Jr., J. Martin, Allen, Benjamin D., and Boal, Amie K. Mon . "Metal-free class Ie ribonucleotide reductase from pathogens initiates catalysis with a tyrosine-derived dihydroxyphenylalanine radical". United States. https://doi.org/10.1073/pnas.1811993115. https://www.osti.gov/servlets/purl/1499708.
@article{osti_1499708,
title = {Metal-free class Ie ribonucleotide reductase from pathogens initiates catalysis with a tyrosine-derived dihydroxyphenylalanine radical},
author = {Blaesi, Elizabeth J. and Palowitch, Gavin M. and Hu, Kai and Kim, Amelia J. and Rose, Hannah R. and Alapati, Rahul and Lougee, Marshall G. and Kim, Hee Jong and Taguchi, Alexander T. and Tan, Kong Ooi and Laremore, Tatiana N. and Griffin, Robert G. and Krebs, Carsten and Matthews, Megan L. and Silakov, Alexey and Bollinger Jr., J. Martin and Allen, Benjamin D. and Boal, Amie K.},
abstractNote = {All cells obtain 2'-deoxyribonucleotides for DNA synthesis through the activity of a ribonucleotide reductase (RNR). The class I RNRs found in humans and pathogenic bacteria differ in (i) use of Fe(II), Mn(II), or both for activation of the dinuclear-metallocofactor subunit, β; (ii) reaction of the reduced dimetal center with dioxygen or superoxide for this activation; (iii) requirement (or lack thereof) for a flavoprotein activase, NrdI, to provide the superoxide from O2; and (iv) use of either a stable tyrosyl radical or a high-valent dimetal cluster to initiate each turnover by oxidizing a cysteine residue in the α subunit to a radical (Cys•). The use of manganese by bacterial class I, subclass b-d RNRs, which contrasts with the exclusive use of iron by the eukaryotic Ia enzymes, appears to be a countermeasure of certain pathogens against iron deprivation imposed by their hosts. Here, we report a metal-free type of class I RNR (subclass e) from two human pathogens. The Cys• in its α subunit is generated by a stable, tyrosine-derived dihydroxyphenylalanine radical (DOPA•) in β. The three-electron oxidation producing DOPA• occurs in Escherichia coli only if the β is coexpressed with the NrdI activase encoded adjacently in the pathogen genome. We conclude the independence of this new RNR from transition metals, or the requirement for a single metal ion only transiently for activation, may afford the pathogens an even more potent countermeasure against transition metal-directed innate immunity.},
doi = {10.1073/pnas.1811993115},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 40,
volume = 115,
place = {United States},
year = {Mon Sep 17 00:00:00 EDT 2018},
month = {Mon Sep 17 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reversible, Long-Range Radical Transfer in E. coli Class Ia Ribonucleotide Reductase
journal, June 2013

  • Minnihan, Ellen C.; Nocera, Daniel G.; Stubbe, JoAnne
  • Accounts of Chemical Research, Vol. 46, Issue 11
  • DOI: 10.1021/ar4000407

Reversible, Long-Range Radical Transfer in E. coli Class Ia Ribonucleotide Reductase
journal, June 2013

  • Minnihan, Ellen C.; Nocera, Daniel G.; Stubbe, JoAnne
  • Accounts of Chemical Research, Vol. 46, Issue 11
  • DOI: 10.1021/ar4000407

The function of adenosylcobalamin in the mechanism of ribonucleoside triphosphate reductase from Lactobacillus leichmannii
journal, January 1998


Intrigues and Intricacies of the Biosynthetic Pathways for the Enzymatic Quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ
journal, December 2013

  • Klinman, Judith P.; Bonnot, Florence
  • Chemical Reviews, Vol. 114, Issue 8
  • DOI: 10.1021/cr400475g

Variable Coordination Geometries at the Diiron(II) Active Site of Ribonucleotide Reductase R2
journal, December 2003

  • Voegtli, Walter C.; Sommerhalter, Monika; Saleh, Lana
  • Journal of the American Chemical Society, Vol. 125, Issue 51
  • DOI: 10.1021/ja0370387

Three-dimensional structure of the free radical protein of ribonucleotide reductase
journal, June 1990

  • Nordlund, Pär; Sjöberg, Britt-Marie; Eklund, Hans
  • Nature, Vol. 345, Issue 6276
  • DOI: 10.1038/345593a0

Escherichia coli Class Ib Ribonucleotide Reductase Contains a Dimanganese(III)-Tyrosyl Radical Cofactor in Vivo
journal, March 2011

  • Cotruvo, Joseph A.; Stubbe, JoAnne
  • Biochemistry, Vol. 50, Issue 10
  • DOI: 10.1021/bi101881d

Variable Coordination Geometries at the Diiron(II) Active Site of Ribonucleotide Reductase R2
journal, December 2003

  • Voegtli, Walter C.; Sommerhalter, Monika; Saleh, Lana
  • Journal of the American Chemical Society, Vol. 125, Issue 51
  • DOI: 10.1021/ja0370387

Iron in infection and immunity
journal, October 2020


Three-dimensional structure of the free radical protein of ribonucleotide reductase
journal, June 1990

  • Nordlund, Pär; Sjöberg, Britt-Marie; Eklund, Hans
  • Nature, Vol. 345, Issue 6276
  • DOI: 10.1038/345593a0

Intrigues and Intricacies of the Biosynthetic Pathways for the Enzymatic Quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ
journal, December 2013

  • Klinman, Judith P.; Bonnot, Florence
  • Chemical Reviews, Vol. 114, Issue 8
  • DOI: 10.1021/cr400475g

Escherichia coli ribonucleotide reductase. Radical susceptibility to hydroxyurea is dependent on the regulatory state of the enzyme.
journal, June 1992


Chemoproteomic profiling and discovery of protein electrophiles in human cells
journal, October 2016

  • Matthews, Megan L.; He, Lin; Horning, Benjamin D.
  • Nature Chemistry, Vol. 9, Issue 3
  • DOI: 10.1038/nchem.2645

Escherichia coli Class Ib Ribonucleotide Reductase Contains a Dimanganese(III)-Tyrosyl Radical Cofactor in Vivo
journal, March 2011

  • Cotruvo, Joseph A.; Stubbe, JoAnne
  • Biochemistry, Vol. 50, Issue 10
  • DOI: 10.1021/bi101881d

Construction and characterization of hybrid plasmids containing the Escherichia coli nrd region.
journal, January 1980


Severe Group A Streptococcal Infections Associated with a Toxic Shock-like Syndrome and Scarlet Fever Toxin A
journal, July 1989

  • Stevens, Dennis L.; Tanner, Martha H.; Winship, Jay
  • New England Journal of Medicine, Vol. 321, Issue 1
  • DOI: 10.1056/NEJM198907063210101

Genetic Characterization and Role in Virulence of the Ribonucleotide Reductases of Streptococcus sanguinis
journal, December 2013

  • Rhodes, DeLacy V.; Crump, Katie E.; Makhlynets, Olga
  • Journal of Biological Chemistry, Vol. 289, Issue 9
  • DOI: 10.1074/jbc.M113.533620

Activation of the Anaerobic Ribonucleotide Reductase by S-Adenosylmethionine
journal, September 2005

  • Gambarelli, Serge; Luttringer, Florence; Padovani, Dominique
  • ChemBioChem, Vol. 6, Issue 11
  • DOI: 10.1002/cbic.200500182

A Manganese(IV)/Iron(III) Cofactor in Chlamydia trachomatis Ribonucleotide Reductase
journal, May 2007


A Manganese(IV)/Iron(III) Cofactor in Chlamydia trachomatis Ribonucleotide Reductase
journal, May 2007


Ribonucleotide Reductases
journal, June 1998


Activation of the Anaerobic Ribonucleotide Reductase by S-Adenosylmethionine
journal, September 2005

  • Gambarelli, Serge; Luttringer, Florence; Padovani, Dominique
  • ChemBioChem, Vol. 6, Issue 11
  • DOI: 10.1002/cbic.200500182

Chemoproteomic profiling and discovery of protein electrophiles in human cells
journal, October 2016

  • Matthews, Megan L.; He, Lin; Horning, Benjamin D.
  • Nature Chemistry, Vol. 9, Issue 3
  • DOI: 10.1038/nchem.2645

A model for the role of multiple cysteine residues involved in ribonucleotide reduction: amazing and still confusing
journal, October 1992

  • Mao, S. S.; Holler, T. P.; Yu, G. X.
  • Biochemistry, Vol. 31, Issue 40
  • DOI: 10.1021/bi00155a029

Iron in Infection and Immunity
journal, May 2013


Structural Basis for Activation of Class Ib Ribonucleotide Reductase
journal, August 2010


Class I Ribonucleotide Reductases: Metallocofactor Assembly and Repair In Vitro and In Vivo
journal, July 2011


2'-Deoxy-2'-azidocytidine, a New Inhibitor of DNA Replication in Mammalian Cells
journal, January 1977


Streptococcus sanguinis Class Ib Ribonucleotide Reductase : HIGH ACTIVITY WITH BOTH IRON AND MANGANESE COFACTORS AND STRUCTURAL INSIGHTS
journal, December 2013

  • Makhlynets, Olga; Boal, Amie K.; Rhodes, DeLacy V.
  • Journal of Biological Chemistry, Vol. 289, Issue 9
  • DOI: 10.1074/jbc.M113.533554

Ribonucleotide Reductases
journal, June 2006


Ribonucleotide Reductases
journal, June 2006


2'-Deoxy-2'-azidocytidine, a New Inhibitor of DNA Replication in Mammalian Cells
journal, January 1977


Class I Ribonucleotide Reductases: Metallocofactor Assembly and Repair In Vitro and In Vivo
journal, July 2011


Discovering new pathogenic prokaryotes
journal, January 2016


Deep mutational scanning: a new style of protein science
journal, July 2014

  • Fowler, Douglas M.; Fields, Stanley
  • Nature Methods, Vol. 11, Issue 8
  • DOI: 10.1038/nmeth.3027

Function of the Diiron Cluster of Escherichia coli Class Ia Ribonucleotide Reductase in Proton-Coupled Electron Transfer
journal, May 2013

  • Wörsdörfer, Bigna; Conner, Denise A.; Yokoyama, Kenichi
  • Journal of the American Chemical Society, Vol. 135, Issue 23
  • DOI: 10.1021/ja401342s

A model for the role of multiple cysteine residues involved in ribonucleotide reduction: amazing and still confusing
journal, October 1992

  • Mao, S. S.; Holler, T. P.; Yu, G. X.
  • Biochemistry, Vol. 31, Issue 40
  • DOI: 10.1021/bi00155a029

Thiyl Radicals in Ribonucleotide Reductases
journal, January 1996


NrdI Essentiality for Class Ib Ribonucleotide Reduction in Streptococcus pyogenes
journal, May 2008

  • Roca, I.; Torrents, E.; Sahlin, M.
  • Journal of Bacteriology, Vol. 190, Issue 14
  • DOI: 10.1128/jb.00185-08

Site-Specific Replacement of Y 356 with 3,4-Dihydroxyphenylalanine in the β2 Subunit of E. coli Ribonucleotide Reductase
journal, March 2006

  • Seyedsayamdost, Mohammad R.; Stubbe, JoAnne
  • Journal of the American Chemical Society, Vol. 128, Issue 8
  • DOI: 10.1021/ja057776q

Aerococcus : an increasingly acknowledged human pathogen
journal, January 2016


Deep mutational scanning: a new style of protein science
journal, July 2014

  • Fowler, Douglas M.; Fields, Stanley
  • Nature Methods, Vol. 11, Issue 8
  • DOI: 10.1038/nmeth.3027

Function of the Diiron Cluster of Escherichia coli Class Ia Ribonucleotide Reductase in Proton-Coupled Electron Transfer
journal, May 2013

  • Wörsdörfer, Bigna; Conner, Denise A.; Yokoyama, Kenichi
  • Journal of the American Chemical Society, Vol. 135, Issue 23
  • DOI: 10.1021/ja401342s

From RNA to DNA, why so many ribonucleotide reductases?
journal, June 1993


Construction and characterization of hybrid plasmids containing the Escherichia coli nrd region.
journal, January 1980


Nature of the free radical in ribonucleotide reductase from Escherichia coli.
journal, January 1977


Works referencing / citing this record:

MaveDB: an open-source platform to distribute and interpret data from multiplexed assays of variant effect
journal, November 2019


Assembly of a heterodinuclear Mn/Fe cofactor is coupled to tyrosine–valine ether cross-link formation in the R2-like ligand-binding oxidase
journal, January 2019

  • Griese, Julia J.; Kositzki, Ramona; Haumann, Michael
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 24, Issue 2
  • DOI: 10.1007/s00775-019-01639-4

Reannotation of the Ribonucleotide Reductase in a Cyanophage Reveals Life History Strategies Within the Virioplankton
journal, February 2019

  • Harrison, Amelia O.; Moore, Ryan M.; Polson, Shawn W.
  • Frontiers in Microbiology, Vol. 10
  • DOI: 10.3389/fmicb.2019.00134

Redox-induced structural changes in the di-iron and di-manganese forms of Bacillus anthracis ribonucleotide reductase subunit NrdF suggest a mechanism for gating of radical access
journal, August 2019

  • Grāve, Kristīne; Lambert, Wietske; Berggren, Gustav
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 24, Issue 6
  • DOI: 10.1007/s00775-019-01703-z

Class Id ribonucleotide reductase utilizes a Mn2(IV,III) cofactor and undergoes large conformational changes on metal loading
text, January 2019

  • Rozman Grinberg, Inna; Berglund, Sigrid; Hasan, Mahmudul
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2019-03523

Chemical flexibility of heterobimetallic Mn/Fe cofactors: R2lox and R2c proteins
journal, October 2019

  • Kutin, Yury; Kositzki, Ramona; Branca, Rui M. M.
  • Journal of Biological Chemistry, Vol. 294, Issue 48
  • DOI: 10.1074/jbc.ra119.010570

Redox-induced structural changes in the di-iron and di-manganese forms of Bacillus anthracis ribonucleotide reductase subunit NrdF suggest a mechanism for gating of radical access
journal, August 2019

  • Grāve, Kristīne; Lambert, Wietske; Berggren, Gustav
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 24, Issue 6
  • DOI: 10.1007/s00775-019-01703-z

Metal sensing and regulation of adaptive responses to manganese limitation by MtsR is critical for group A streptococcus virulence
journal, June 2019

  • Do, Hackwon; Makthal, Nishanth; Chandrangsu, Pete
  • Nucleic Acids Research, Vol. 47, Issue 14
  • DOI: 10.1093/nar/gkz524

Metal sensing and regulation of adaptive responses to manganese limitation by MtsR is critical for group A streptococcus virulence
journal, July 2019

  • Do, Hackwon; Makthal, Nishanth; Chandrangsu, Pete
  • Nucleic Acids Research, Vol. 47, Issue 15
  • DOI: 10.1093/nar/gkz641

Class Id ribonucleotide reductase utilizes a Mn2(IV,III) cofactor and undergoes large conformational changes on metal loading
journal, August 2019

  • Rozman Grinberg, Inna; Berglund, Sigrid; Hasan, Mahmudul
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 24, Issue 6
  • DOI: 10.1007/s00775-019-01697-8

MaveDB: an open-source platform to distribute and interpret data from multiplexed assays of variant effect
journal, November 2019