skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Indirect excitons in van der Waals heterostructures at room temperature

Abstract

Indirect excitons (IXs) are explored both for studying quantum Bose gases in semiconductor materials and for the development of excitonic devices. IXs were extensively studied in III–V and II–VI semiconductor heterostructures where IX range of existence has been limited to low temperatures. Here, we present the observation of IXs at room temperature in van der Waals transition metal dichalcogenide (TMD) heterostructures. Here, this is achieved in TMD heterostructures based on monolayers of MoS2 separated by atomically thin hexagonal boron nitride. The IXs we realize in the TMD heterostructure have lifetimes orders of magnitude longer than lifetimes of direct excitons in single-layer TMD and their energy is gate controlled. The realization of IXs at room temperature establishes the TMD heterostructures as a material platform both for a field of high-temperature quantum Bose gases of IXs and for a field of high-temperature excitonic devices.

Authors:
 [1];  [1];  [1];  [2]; ORCiD logo [2];  [2]
  1. Univ. of California, San Diego, La Jolla, CA (United States)
  2. Univ. of Manchester, Manchester (United Kingdom)
Publication Date:
Research Org.:
Univ. of California, San Diego, La Jolla, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1499677
Grant/Contract Number:  
FG02-07ER46449
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Calman, E. V., Fogler, M. M., Butov, L. V., Hu, S., Mishchenko, A., and Geim, A. K. Indirect excitons in van der Waals heterostructures at room temperature. United States: N. p., 2018. Web. doi:10.1038/s41467-018-04293-7.
Calman, E. V., Fogler, M. M., Butov, L. V., Hu, S., Mishchenko, A., & Geim, A. K. Indirect excitons in van der Waals heterostructures at room temperature. United States. doi:10.1038/s41467-018-04293-7.
Calman, E. V., Fogler, M. M., Butov, L. V., Hu, S., Mishchenko, A., and Geim, A. K. Mon . "Indirect excitons in van der Waals heterostructures at room temperature". United States. doi:10.1038/s41467-018-04293-7. https://www.osti.gov/servlets/purl/1499677.
@article{osti_1499677,
title = {Indirect excitons in van der Waals heterostructures at room temperature},
author = {Calman, E. V. and Fogler, M. M. and Butov, L. V. and Hu, S. and Mishchenko, A. and Geim, A. K.},
abstractNote = {Indirect excitons (IXs) are explored both for studying quantum Bose gases in semiconductor materials and for the development of excitonic devices. IXs were extensively studied in III–V and II–VI semiconductor heterostructures where IX range of existence has been limited to low temperatures. Here, we present the observation of IXs at room temperature in van der Waals transition metal dichalcogenide (TMD) heterostructures. Here, this is achieved in TMD heterostructures based on monolayers of MoS2 separated by atomically thin hexagonal boron nitride. The IXs we realize in the TMD heterostructure have lifetimes orders of magnitude longer than lifetimes of direct excitons in single-layer TMD and their energy is gate controlled. The realization of IXs at room temperature establishes the TMD heterostructures as a material platform both for a field of high-temperature quantum Bose gases of IXs and for a field of high-temperature excitonic devices.},
doi = {10.1038/s41467-018-04293-7},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1 : MoS2/hBN coupled quantum well heterostructure. The coupled quantum well van der Waals heterostructure layer (a) and energy-band (b) diagrams. The ovals indicate a direct exciton (DX) and an indirect exciton (IX) composed of an electron (−) and a hole (+). (c) Microscope image showing the layer patternmore » of the device, scale bar is 10 μm« less

Save / Share:

Works referenced in this record:

Spin Currents in a Coherent Exciton Gas
journal, June 2013


Exciton condensation and perfect Coulomb drag
journal, August 2012

  • Nandi, D.; Finck, A. D. K.; Eisenstein, J. P.
  • Nature, Vol. 488, Issue 7412
  • DOI: 10.1038/nature11302

Exciton Radiative Lifetimes in Two-Dimensional Transition Metal Dichalcogenides
journal, March 2015

  • Palummo, Maurizia; Bernardi, Marco; Grossman, Jeffrey C.
  • Nano Letters, Vol. 15, Issue 5
  • DOI: 10.1021/nl503799t

Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides
journal, April 2014

  • Fang, H.; Battaglia, C.; Carraro, C.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 17
  • DOI: 10.1073/pnas.1405435111

Van der Waals heterostructures
journal, July 2013

  • Geim, A. K.; Grigorieva, I. V.
  • Nature, Vol. 499, Issue 7459, p. 419-425
  • DOI: 10.1038/nature12385

Direct and indirect magnetoexcitons in symmetric In x Ga 1 x As/GaAs coupled quantum wells
journal, October 1995


High-temperature superfluidity with indirect excitons in van der Waals heterostructures
journal, July 2014

  • Fogler, M. M.; Butov, L. V.; Novoselov, K. S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5555

Excitonic devices
journal, August 2017


Valley-polarized exciton dynamics in a 2D semiconductor heterostructure
journal, February 2016


Thermal dissociation of inter-layer excitons in MoS 2 /MoSe 2 hetero-bilayers
journal, January 2017

  • Mouri, Shinichiro; Zhang, Wenjing; Kozawa, Daichi
  • Nanoscale, Vol. 9, Issue 20
  • DOI: 10.1039/C7NR01598D

Transport of indirect excitons in ZnO quantum wells
journal, January 2015

  • Kuznetsova, Y. Y.; Fedichkin, F.; Andreakou, P.
  • Optics Letters, Vol. 40, Issue 15
  • DOI: 10.1364/OL.40.003667

Stimulated Scattering of Indirect Excitons in Coupled Quantum Wells: Signature of a Degenerate Bose-Gas of Excitons
journal, June 2001


Interlayer Excitons and Band Alignment in MoS 2 /hBN/WSe 2 van der Waals Heterostructures
journal, January 2017


Spontaneous coherence in a cold exciton gas
journal, March 2012

  • High, A. A.; Leonard, J. R.; Hammack, A. T.
  • Nature, Vol. 483, Issue 7391
  • DOI: 10.1038/nature10903

Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures
journal, August 2014

  • Hong, Xiaoping; Kim, Jonghwan; Shi, Su-Fei
  • Nature Nanotechnology, Vol. 9, Issue 9
  • DOI: 10.1038/nnano.2014.167

Internal electric field in wurtzite Zn O Zn 0.78 Mg 0.22 O quantum wells
journal, December 2005


Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures
journal, May 1994


Probing excitonic dark states in single-layer tungsten disulphide
journal, August 2014

  • Ye, Ziliang; Cao, Ting; O’Brien, Kevin
  • Nature, Vol. 513, Issue 7517
  • DOI: 10.1038/nature13734

Low-temperature photocarrier dynamics in monolayer MoS 2
journal, September 2011

  • Korn, T.; Heydrich, S.; Hirmer, M.
  • Applied Physics Letters, Vol. 99, Issue 10
  • DOI: 10.1063/1.3636402

Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure
journal, June 2017


Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures
journal, February 2012


Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides
journal, April 1987

  • Islam, M. N.; Hillman, R. L.; Miller, D. A. B.
  • Applied Physics Letters, Vol. 50, Issue 16
  • DOI: 10.1063/1.97930

Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures
journal, August 2017


Indirect excitons in coupled quantum well structures
journal, February 1992


Excitonic switches operating at around 100 K
journal, September 2009


Electric-field effects on exciton lifetimes in symmetric coupled GaAs/ Al 0.3 Ga 0.7 As double quantum wells
journal, November 1990


Transport of dipolar excitons in (Al,Ga)N/GaN quantum wells
journal, May 2015


Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS 2
journal, August 2014


Control of excitons in multi-layer van der Waals heterostructures
journal, March 2016

  • Calman, E. V.; Dorow, C. J.; Fogler, M. M.
  • Applied Physics Letters, Vol. 108, Issue 10
  • DOI: 10.1063/1.4943204

Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures
journal, March 1984


Fluctuation and commensurability effect of exciton density wave
journal, June 2015


Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures
journal, February 2015

  • Rivera, Pasqual; Schaibley, John R.; Jones, Aaron M.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7242

Room-Temperature Transport of Indirect Excitons in ( Al , Ga ) N / GaN Quantum Wells
journal, July 2016


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.