DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Engineering of a calcium-ion binding site into the RC-LH1-PufX complex of Rhodobacter sphaeroides to enable ion-dependent spectral red-shifting

Abstract

The reaction centre-light harvesting 1 (RC-LH1) complex of Thermochromatium (Tch.) tepidum has a unique calcium-ion binding site that enhances thermal stability and red-shifts the absorption of LH1 from 880 nm to 915 nm in the presence of calcium-ions. The LH1 antenna of mesophilic species of phototrophic bacteria such as Rhodobacter (Rba.) sphaeroides does not possess such properties. We have engineered calcium-ion binding into the LH1 antenna of Rba. sphaeroides by progressively modifying the native LH1 polypeptides with sequences from Tch. tepidum. We show that acquisition of the C-terminal domains from LH1 α and β of Tch. tepidum is sufficient to activate calcium-ion binding and the extent of red-shifting increases with the proportion of Tch. tepidum sequence incorporated. However, full exchange of the LH1 polypeptides with those of Tch. tepidum results in misassembled core complexes. Isolated α and β polypeptides from our most successful mutant were reconstituted in vitro with BChl a to form an LH1-type complex, which was stabilised 3-fold by calcium-ions. Additionally, carotenoid specificity was changed from spheroidene found in Rba. sphaeroides to spirilloxanthin found in Tch. tepidum, with the latter enhancing in vitro formation of LH1. These data show that the C-terminal LH1 α/β domains of Tch. tepidummore » behave autonomously, and are able to transmit calcium-ion induced conformational changes to BChls bound to the rest of a foreign antenna complex. Thus, elements of foreign antenna complexes, such as calcium-ion binding and blue/red switching of absorption, can be ported into Rhodobacter sphaeroides using careful design processes.« less

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Northwestern Univ., Evanston, IL (United States); Univ. of Sheffield (United Kingdom); Energy Frontier Research Centers (EFRC) (United States). Photosynthetic Antenna Research Center (PARC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Biotechnology and Biological Sciences Research Council (BBSRC); European Research Council (ERC)
OSTI Identifier:
1377998
Alternate Identifier(s):
OSTI ID: 1499113
Grant/Contract Number:  
SC0001035; BB/M000265/1; 338895
Resource Type:
Published Article
Journal Name:
Biochimica et Biophysica Acta - Bioenergetics
Additional Journal Information:
Journal Name: Biochimica et Biophysica Acta - Bioenergetics Journal Volume: 1858 Journal Issue: 11; Journal ID: ISSN 0005-2728
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Rhodobacter sphaeroides; Thermochromatium tepidum; protein engineering; reaction centre; antenna complex; calcium-ion binding

Citation Formats

Swainsbury, David J. K., Martin, Elizabeth C., Vasilev, Cvetelin, Parkes-Loach, Pamela S., Loach, Paul A., and Neil Hunter, C. Engineering of a calcium-ion binding site into the RC-LH1-PufX complex of Rhodobacter sphaeroides to enable ion-dependent spectral red-shifting. Netherlands: N. p., 2017. Web. doi:10.1016/j.bbabio.2017.08.009.
Swainsbury, David J. K., Martin, Elizabeth C., Vasilev, Cvetelin, Parkes-Loach, Pamela S., Loach, Paul A., & Neil Hunter, C. Engineering of a calcium-ion binding site into the RC-LH1-PufX complex of Rhodobacter sphaeroides to enable ion-dependent spectral red-shifting. Netherlands. https://doi.org/10.1016/j.bbabio.2017.08.009
Swainsbury, David J. K., Martin, Elizabeth C., Vasilev, Cvetelin, Parkes-Loach, Pamela S., Loach, Paul A., and Neil Hunter, C. Fri . "Engineering of a calcium-ion binding site into the RC-LH1-PufX complex of Rhodobacter sphaeroides to enable ion-dependent spectral red-shifting". Netherlands. https://doi.org/10.1016/j.bbabio.2017.08.009.
@article{osti_1377998,
title = {Engineering of a calcium-ion binding site into the RC-LH1-PufX complex of Rhodobacter sphaeroides to enable ion-dependent spectral red-shifting},
author = {Swainsbury, David J. K. and Martin, Elizabeth C. and Vasilev, Cvetelin and Parkes-Loach, Pamela S. and Loach, Paul A. and Neil Hunter, C.},
abstractNote = {The reaction centre-light harvesting 1 (RC-LH1) complex of Thermochromatium (Tch.) tepidum has a unique calcium-ion binding site that enhances thermal stability and red-shifts the absorption of LH1 from 880 nm to 915 nm in the presence of calcium-ions. The LH1 antenna of mesophilic species of phototrophic bacteria such as Rhodobacter (Rba.) sphaeroides does not possess such properties. We have engineered calcium-ion binding into the LH1 antenna of Rba. sphaeroides by progressively modifying the native LH1 polypeptides with sequences from Tch. tepidum. We show that acquisition of the C-terminal domains from LH1 α and β of Tch. tepidum is sufficient to activate calcium-ion binding and the extent of red-shifting increases with the proportion of Tch. tepidum sequence incorporated. However, full exchange of the LH1 polypeptides with those of Tch. tepidum results in misassembled core complexes. Isolated α and β polypeptides from our most successful mutant were reconstituted in vitro with BChl a to form an LH1-type complex, which was stabilised 3-fold by calcium-ions. Additionally, carotenoid specificity was changed from spheroidene found in Rba. sphaeroides to spirilloxanthin found in Tch. tepidum, with the latter enhancing in vitro formation of LH1. These data show that the C-terminal LH1 α/β domains of Tch. tepidum behave autonomously, and are able to transmit calcium-ion induced conformational changes to BChls bound to the rest of a foreign antenna complex. Thus, elements of foreign antenna complexes, such as calcium-ion binding and blue/red switching of absorption, can be ported into Rhodobacter sphaeroides using careful design processes.},
doi = {10.1016/j.bbabio.2017.08.009},
journal = {Biochimica et Biophysica Acta - Bioenergetics},
number = 11,
volume = 1858,
place = {Netherlands},
year = {Fri Aug 18 00:00:00 EDT 2017},
month = {Fri Aug 18 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.bbabio.2017.08.009

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Enhanced Output from Biohybrid Photoelectrochemical Transparent Tandem Cells Integrating Photosynthetic Proteins Genetically Modified for Expanded Solar Energy Harvesting
journal, December 2016

  • Ravi, Sai Kishore; Yu, Zhimeng; Swainsbury, David J. K.
  • Advanced Energy Materials, Vol. 7, Issue 7
  • DOI: 10.1002/aenm.201601821

A Novel Photosynthetic Purple Bacterium Isolated from a Yellowstone Hot Spring
journal, July 1984


Cross-species investigation of the functions of the Rhodobacter PufX polypeptide and the composition of the RC–LH1 core complex
journal, February 2012

  • Crouch, Lucy I.; Jones, Michael R.
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1817, Issue 2
  • DOI: 10.1016/j.bbabio.2011.10.009

The petite purple photosynthetic powerpack
journal, March 2009

  • Jones, Michael R.
  • Biochemical Society Transactions, Vol. 37, Issue 2
  • DOI: 10.1042/BST0370400

Enhanced Light-Harvesting Capacity by Micellar Assembly of Free Accessory Chromophores and LH1-like Antennas
journal, September 2014

  • Harris, Michelle A.; Sahin, Tuba; Jiang, Jianbing
  • Photochemistry and Photobiology, Vol. 90, Issue 6
  • DOI: 10.1111/php.12319

Isolation, Size Estimates, and Spectral Heterogeneity of an Oligomeric Series of Light-Harvesting 1 Complexes from Rhodobacter sphaeroides
journal, July 2002

  • Westerhuis, Willem H. J.; Sturgis, James N.; Ratcliffe, Emma C.
  • Biochemistry, Vol. 41, Issue 27
  • DOI: 10.1021/bi011663b

Modification of a hydrogen bond to a bacteriochlorophyll a molecule in the light-harvesting 1 antenna of Rhodobacter sphaeroides.
journal, July 1994

  • Olsen, J. D.; Sockalingum, G. D.; Robert, B.
  • Proceedings of the National Academy of Sciences, Vol. 91, Issue 15
  • DOI: 10.1073/pnas.91.15.7124

Evaluation of Structure−Function Relationships in the Core Light-Harvesting Complex of Photosynthetic Bacteria by Reconstitution with Mutant Polypeptides
journal, March 1997

  • Davis, Christine M.; Bustamante, Peggy L.; Todd, John B.
  • Biochemistry, Vol. 36, Issue 12
  • DOI: 10.1021/bi962386p

Carotenoid diversity: a modular role for the phytoene desaturase step
journal, November 1998


Purification and Characterization of the Polypeptides of Core Light-Harvesting Complexes from Purple Sulfur Bacteria
journal, January 2003


The LH1–RC core complex of Rhodobacter sphaeroides: interaction between components, time-dependent assembly, and topology of the PufX protein
journal, September 1998

  • Pugh, Rachel J.; McGlynn, Peter; Jones, Michael R.
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1366, Issue 3
  • DOI: 10.1016/S0005-2728(98)00131-5

Functions of Conserved Tryptophan Residues of the Core Light-Harvesting Complex of Rhodobacter sphaeroides
journal, March 1997

  • Sturgis, James N.; Olsen, John D.; Robert, Bruno
  • Biochemistry, Vol. 36, Issue 10
  • DOI: 10.1021/bi962524a

Versatile design of biohybrid light-harvesting architectures to tune location, density, and spectral coverage of attached synthetic chromophores for enhanced energy capture
journal, March 2014

  • Harris, Michelle A.; Jiang, Jianbing; Niedzwiedzki, Dariusz M.
  • Photosynthesis Research, Vol. 121, Issue 1
  • DOI: 10.1007/s11120-014-9993-8

Structural Basis for the Unusual Q y Red-Shift and Enhanced Thermostability of the LH1 Complex from Thermochromatium tepidum
journal, November 2016


Spectroscopic and Thermodynamic Characterization of the Metal-Binding Sites in the LH1–RC Complex from Thermophilic Photosynthetic Bacterium Thermochromatium tepidum
journal, November 2016

  • Kimura, Yukihiro; Yura, Yuki; Hayashi, Yusuke
  • The Journal of Physical Chemistry B, Vol. 120, Issue 49
  • DOI: 10.1021/acs.jpcb.6b10068

The 8.5Å Projection Structure of the Core RC–LH1–PufX Dimer of Rhodobacter sphaeroides
journal, June 2005


Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands
journal, February 1992

  • Fowler, G. J. S.; Visschers, R. W.; Grief, G. G.
  • Nature, Vol. 355, Issue 6363
  • DOI: 10.1038/355848a0

The origin of the unusual Qy red shift in LH1–RC complexes from purple bacteria Thermochromatium tepidum as revealed by Stark absorption spectroscopy
journal, December 2015

  • Ma, Fei; Yu, Long-Jiang; Wang-Otomo, Zheng-Yu
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1847, Issue 12
  • DOI: 10.1016/j.bbabio.2015.08.007

Three-Dimensional Structure of the Rhodobacter sphaeroides RC-LH1-PufX Complex: Dimerization and Quinone Channels Promoted by PufX
journal, October 2013

  • Qian, Pu; Papiz, Miroslav Z.; Jackson, Philip J.
  • Biochemistry, Vol. 52, Issue 43
  • DOI: 10.1021/bi4011946

Isolation and characterization of the pigment-protein complexes of Rhodopseudomonas sphaeroides by lithium dodecyl sulfate/polyacrylamide gel electrophoresis.
journal, January 1980

  • Broglie, R. M.; Hunter, C. N.; Delepelaire, P.
  • Proceedings of the National Academy of Sciences, Vol. 77, Issue 1
  • DOI: 10.1073/pnas.77.1.87

The PufX quinone channel enables the light-harvesting 1 antenna to bind more carotenoids for light collection and photoprotection
journal, February 2017

  • Olsen, John D.; Martin, Elizabeth C.; Hunter, C. Neil
  • FEBS Letters, Vol. 591, Issue 4
  • DOI: 10.1002/1873-3468.12575

The solution structure of the PufX polypeptide from Rhodobacter sphaeroides
journal, December 2006


Demonstration of the Key Role Played by the PufX Protein in the Functional and Structural Organization of Native and Hybrid Bacterial Photosynthetic Core Complexes
journal, February 1998


Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway
journal, February 2015

  • Chi, Shuang C.; Mothersole, David J.; Dilbeck, Preston
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1847, Issue 2
  • DOI: 10.1016/j.bbabio.2014.10.004

Enhanced rates of subpicosecond energy transfer in blue-shifted light-harvesting LH2 mutants of Rhodobacter sphaeroides.
journal, July 1994

  • Hess, S.; Visscher, K. J.; Pullerits, T.
  • Biochemistry, Vol. 33, Issue 27
  • DOI: 10.1021/bi00193a017

Amphiphilic, hydrophilic, or hydrophobic synthetic bacteriochlorins in biohybrid light-harvesting architectures: consideration of molecular designs
journal, July 2014

  • Jiang, Jianbing; Reddy, Kanumuri Ramesh; Pavan, M. Phani
  • Photosynthesis Research, Vol. 122, Issue 2
  • DOI: 10.1007/s11120-014-0021-9

Calcium Ion Binding Properties of Medicago truncatula Calcium/Calmodulin-Dependent Protein Kinase
journal, August 2012

  • Swainsbury, David J. K.; Zhou, Liang; Oldroyd, Giles E. D.
  • Biochemistry, Vol. 51, Issue 35
  • DOI: 10.1021/bi300826m

Plasmon-Enhanced Photocurrent of Photosynthetic Pigment Proteins on Nanoporous Silver
journal, December 2015

  • Friebe, Vincent M.; Delgado, Juan D.; Swainsbury, David J. K.
  • Advanced Functional Materials, Vol. 26, Issue 2
  • DOI: 10.1002/adfm.201504020

Probing the structure of the core light-harvesting complex (LH1) of Rhodopseudomonas viridis by dissociation and reconstitution methodology
journal, June 1994

  • Parkes-Loach, Pamela S.; Jones, Sandra M.; Loach, Paul A.
  • Photosynthesis Research, Vol. 40, Issue 3
  • DOI: 10.1007/BF00034774

Directed Formation of Micro- and Nanoscale Patterns of Functional Light-Harvesting LH2 Complexes
journal, November 2007

  • Reynolds, Nicholas P.; Janusz, Stefan; Escalante-Marun, Maryana
  • Journal of the American Chemical Society, Vol. 129, Issue 47
  • DOI: 10.1021/ja073658m

Palette of lipophilic bioconjugatable bacteriochlorins for construction of biohybrid light-harvesting architectures
journal, January 2013

  • Reddy, Kanumuri Ramesh; Jiang, Jianbing; Krayer, Michael
  • Chemical Science, Vol. 4, Issue 5
  • DOI: 10.1039/c3sc22317e

Photoprotection in a purple phototrophic bacterium mediated by oxygen-dependent alteration of carotenoid excited-state properties
journal, May 2012

  • Slouf, V.; Chabera, P.; Olsen, J. D.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 22
  • DOI: 10.1073/pnas.1201413109

Structure of the LH1–RC complex from Thermochromatium tepidum at 3.0 Å
journal, March 2014

  • Niwa, Satomi; Yu, Long-Jiang; Takeda, Kazuki
  • Nature, Vol. 508, Issue 7495
  • DOI: 10.1038/nature13197

Long-Range Energy Propagation in Nanometer Arrays of Light Harvesting Antenna Complexes
journal, April 2010

  • Escalante, Maryana; Lenferink, Aufried; Zhao, Yiping
  • Nano Letters, Vol. 10, Issue 4, p. 1450-1457
  • DOI: 10.1021/nl1003569

Evaluation of a biohybrid photoelectrochemical cell employing the purple bacterial reaction centre as a biosensor for herbicides
journal, August 2014

  • Swainsbury, David J. K.; Friebe, Vincent M.; Frese, Raoul N.
  • Biosensors and Bioelectronics, Vol. 58
  • DOI: 10.1016/j.bios.2014.02.050

Interference lithographic nanopatterning of plant and bacterial light-harvesting complexes on gold substrates
journal, August 2015

  • Patole, Samson; Vasilev, Cvetelin; El-Zubir, Osama
  • Interface Focus, Vol. 5, Issue 4
  • DOI: 10.1098/rsfs.2015.0005

Protein Shape and Crowding Drive Domain Formation and Curvature in Biological Membranes
journal, January 2008


Protein-Induced Membrane Curvature Investigated through Molecular Dynamics Flexible Fitting
journal, July 2009


Biohybrid Photosynthetic Antenna Complexes for Enhanced Light-Harvesting
journal, February 2012

  • Springer, Joseph W.; Parkes-Loach, Pamela S.; Reddy, Kanumuri Ramesh
  • Journal of the American Chemical Society, Vol. 134, Issue 10
  • DOI: 10.1021/ja207390y

The EMBL-EBI bioinformatics web and programmatic tools framework
journal, April 2015

  • Li, Weizhong; Cowley, Andrew; Uludag, Mahmut
  • Nucleic Acids Research, Vol. 43, Issue W1
  • DOI: 10.1093/nar/gkv279

PucC and LhaA direct efficient assembly of the light-harvesting complexes in Rhodobacter sphaeroides : Photosystem assembly in
journal, November 2015

  • Mothersole, David J.; Jackson, Philip J.; Vasilev, Cvetelin
  • Molecular Microbiology, Vol. 99, Issue 2
  • DOI: 10.1111/mmi.13235

Site-Directed Modification of the Ligands to the Bacteriochlorophylls of the Light-Harvesting LH1 and LH2 Complexes of Rhodobacter sphaeroides
journal, October 1997

  • Olsen, J. D.; Sturgis, J. N.; Westerhuis, W. H. J.
  • Biochemistry, Vol. 36, Issue 41
  • DOI: 10.1021/bi9710481

Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre
journal, January 2017

  • Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13972

The C-terminus of PufX plays a key role in dimerisation and assembly of the reaction center light-harvesting 1 complex from Rhodobacter sphaeroides
journal, September 2017

  • Qian, Pu; Martin, Elizabeth C.; Ng, Irene W.
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1858, Issue 9
  • DOI: 10.1016/j.bbabio.2017.06.001

Reversible Switching between Nonquenched and Quenched States in Nanoscale Linear Arrays of Plant Light-Harvesting Antenna Complexes
journal, July 2014

  • Vasilev, Cvetelin; Johnson, Matthew P.; Gonzales, Edward
  • Langmuir, Vol. 30, Issue 28
  • DOI: 10.1021/la501483s

Integration of multiple chromophores with native photosynthetic antennas to enhance solar energy capture and delivery
journal, January 2013

  • Harris, Michelle A.; Parkes-Loach, Pamela S.; Springer, Joseph W.
  • Chemical Science, Vol. 4, Issue 10
  • DOI: 10.1039/c3sc51518d