skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pathways for practical high-energy long-cycling lithium metal batteries

Abstract

State-of-the-art lithium (Li)-ion batteries are approaching their specific energy limits yet are challenged by the ever-increasing demand of today’s energy storage and power applications, especially for electric vehicles. Li metal is considered an ultimate anode material for future high-energy rechargeable batteries when combined with existing or emerging high-capacity cathode materials. However, much current research focuses on the battery materials level, and there have been very few accounts of cell design principles. Here we discuss crucial conditions needed to achieve a specific energy higher than 350 Wh kg-1, up to 500 Wh kg-1, for rechargeable Li metal batteries using high-nickel-content lithium nickel manganese cobalt oxides as cathode materials. We also provide an analysis of key factors such as cathode loading, electrolyte amount and Li foil thickness that impact the cell-level cycle life. Furthermore, we identify several important strategies to reduce electrolyte-Li reaction, protect Li surfaces and stabilize anode architectures for long-cycling high-specific-energy cells.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [6]; ORCiD logo [4]; ORCiD logo [6];  [7]; ORCiD logo [8];  [1]; ORCiD logo [9];  [1]; ORCiD logo [1]; ORCiD logo [10];  [5]; ORCiD logo [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Energy and Environment Directorate
  2. Stanford Univ., CA (United States). Dept. of Materials Science and Engineering
  3. Idaho National Lab. (INL), Idaho Falls, ID (United States). Clean Energy and Transportation Division
  4. Univ. of Texas, Austin, TX (United States). Dept. of Mechanical Engineering
  5. Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Division
  6. Univ. of California, San Diego, CA (United States). Dept. of NanoEngineering
  7. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Energy and Environment Directorate; Univ. of Washington, Seattle, WA (United States). College of Engineering
  8. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource
  9. Binghamton Univ., NY (United States). Dept. of Materials Science and Engineering
  10. Univ. of Washington, Seattle, WA (United States). College of Engineering
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Idaho National Lab. (INL), Idaho Falls, ID (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1498872
Alternate Identifier(s):
OSTI ID: 1559963
Report Number(s):
BNL-211347-2019-JAAM; INL/JOU-17-43532-Rev000
Journal ID: ISSN 2058-7546
Grant/Contract Number:  
SC0012704; AC02-05CH11231; AC07-05ID14517
Resource Type:
Accepted Manuscript
Journal Name:
Nature Energy
Additional Journal Information:
Journal Volume: 4; Journal Issue: 3; Journal ID: ISSN 2058-7546
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; batteries; energy efficiency; energy storage; materials for energy and catalysis; 25 - ENERGY STORAGE; Battery; Li; High Energy Density

Citation Formats

Liu, Jun, Bao, Zhenan, Cui, Yi, Dufek, Eric J., Goodenough, John B., Khalifah, Peter, Li, Qiuyan, Liaw, Bor Yann, Liu, Ping, Manthiram, Arumugam, Meng, Y. Shirley, Subramanian, Venkat R., Toney, Michael F., Viswanathan, Vilayanur V., Whittingham, M. Stanley, Xiao, Jie, Xu, Wu, Yang, Jihui, Yang, Xiao-Qing, and Zhang, Ji-Guang. Pathways for practical high-energy long-cycling lithium metal batteries. United States: N. p., 2019. Web. doi:10.1038/s41560-019-0338-x.
Liu, Jun, Bao, Zhenan, Cui, Yi, Dufek, Eric J., Goodenough, John B., Khalifah, Peter, Li, Qiuyan, Liaw, Bor Yann, Liu, Ping, Manthiram, Arumugam, Meng, Y. Shirley, Subramanian, Venkat R., Toney, Michael F., Viswanathan, Vilayanur V., Whittingham, M. Stanley, Xiao, Jie, Xu, Wu, Yang, Jihui, Yang, Xiao-Qing, & Zhang, Ji-Guang. Pathways for practical high-energy long-cycling lithium metal batteries. United States. doi:https://doi.org/10.1038/s41560-019-0338-x
Liu, Jun, Bao, Zhenan, Cui, Yi, Dufek, Eric J., Goodenough, John B., Khalifah, Peter, Li, Qiuyan, Liaw, Bor Yann, Liu, Ping, Manthiram, Arumugam, Meng, Y. Shirley, Subramanian, Venkat R., Toney, Michael F., Viswanathan, Vilayanur V., Whittingham, M. Stanley, Xiao, Jie, Xu, Wu, Yang, Jihui, Yang, Xiao-Qing, and Zhang, Ji-Guang. Mon . "Pathways for practical high-energy long-cycling lithium metal batteries". United States. doi:https://doi.org/10.1038/s41560-019-0338-x. https://www.osti.gov/servlets/purl/1498872.
@article{osti_1498872,
title = {Pathways for practical high-energy long-cycling lithium metal batteries},
author = {Liu, Jun and Bao, Zhenan and Cui, Yi and Dufek, Eric J. and Goodenough, John B. and Khalifah, Peter and Li, Qiuyan and Liaw, Bor Yann and Liu, Ping and Manthiram, Arumugam and Meng, Y. Shirley and Subramanian, Venkat R. and Toney, Michael F. and Viswanathan, Vilayanur V. and Whittingham, M. Stanley and Xiao, Jie and Xu, Wu and Yang, Jihui and Yang, Xiao-Qing and Zhang, Ji-Guang},
abstractNote = {State-of-the-art lithium (Li)-ion batteries are approaching their specific energy limits yet are challenged by the ever-increasing demand of today’s energy storage and power applications, especially for electric vehicles. Li metal is considered an ultimate anode material for future high-energy rechargeable batteries when combined with existing or emerging high-capacity cathode materials. However, much current research focuses on the battery materials level, and there have been very few accounts of cell design principles. Here we discuss crucial conditions needed to achieve a specific energy higher than 350 Wh kg-1, up to 500 Wh kg-1, for rechargeable Li metal batteries using high-nickel-content lithium nickel manganese cobalt oxides as cathode materials. We also provide an analysis of key factors such as cathode loading, electrolyte amount and Li foil thickness that impact the cell-level cycle life. Furthermore, we identify several important strategies to reduce electrolyte-Li reaction, protect Li surfaces and stabilize anode architectures for long-cycling high-specific-energy cells.},
doi = {10.1038/s41560-019-0338-x},
journal = {Nature Energy},
number = 3,
volume = 4,
place = {United States},
year = {2019},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 178 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


In situ Scanning Electron Microscopy (SEM) observation of interfaces within plastic lithium batteries
journal, November 1998


Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons
journal, April 2017

  • Ye, Huan; Xin, Sen; Yin, Ya-Xia
  • Journal of the American Chemical Society, Vol. 139, Issue 16
  • DOI: 10.1021/jacs.7b01763

Accelerating Electrolyte Discovery for Energy Storage with High-Throughput Screening
journal, January 2015

  • Cheng, Lei; Assary, Rajeev S.; Qu, Xiaohui
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 2
  • DOI: 10.1021/jz502319n

Effect of Ion Distribution on Conductivity of Block Copolymer Electrolytes
journal, March 2009

  • Gomez, Enrique D.; Panday, Ashoutosh; Feng, Edward H.
  • Nano Letters, Vol. 9, Issue 3
  • DOI: 10.1021/nl900091n

Predicting and Extending the Lifetime of Li-Ion Batteries
journal, January 2013

  • Burns, J. C.; Kassam, Adil; Sinha, N. N.
  • Journal of The Electrochemical Society, Vol. 160, Issue 9
  • DOI: 10.1149/2.060309jes

Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte
journal, January 2017


Impacts of lean electrolyte on cycle life for rechargeable Li metal batteries
journal, December 2018


Polymer electrolytes for lithium polymer batteries
journal, January 2016

  • Long, Lizhen; Wang, Shuanjin; Xiao, Min
  • Journal of Materials Chemistry A, Vol. 4, Issue 26
  • DOI: 10.1039/C6TA02621D

Development of a water based process for stable conversion cathodes on the basis of FeF 3
journal, May 2016


The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Flexible Ion-Conducting Composite Membranes for Lithium Batteries
journal, May 2015

  • Aetukuri, Nagaphani B.; Kitajima, Shintaro; Jung, Edward
  • Advanced Energy Materials, Vol. 5, Issue 14
  • DOI: 10.1002/aenm.201500265

Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive
journal, July 2015


Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries
journal, July 2018


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Transition of lithium growth mechanisms in liquid electrolytes
journal, January 2016

  • Bai, Peng; Li, Ju; Brushett, Fikile R.
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE01674J

Extending the Service Life of High-Ni Layered Oxides by Tuning the Electrode-Electrolyte Interphase
journal, September 2018


Ultimate Limits to Intercalation Reactions for Lithium Batteries
journal, October 2014

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr5003003

High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes
journal, March 2018

  • Chen, Shuru; Zheng, Jianming; Mei, Donghai
  • Advanced Materials, Vol. 30, Issue 21
  • DOI: 10.1002/adma.201706102

Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries
journal, August 2018


Advancing Lithium Metal Batteries
journal, May 2018


A facile surface chemistry route to a stabilized lithium metal anode
journal, July 2017


Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries
journal, August 2018


Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework
journal, March 2018

  • Yang, Chunpeng; Zhang, Lei; Liu, Boyang
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 15
  • DOI: 10.1073/pnas.1719758115

Linear Stability Analysis of Unsteady Galvanostatic Electrodeposition in the Two-Dimensional Diffusion-Limited Regime
journal, January 1998

  • Elezgaray, J.
  • Journal of The Electrochemical Society, Vol. 145, Issue 6
  • DOI: 10.1149/1.1838592

Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries
journal, May 2014

  • Khurana, Rachna; Schaefer, Jennifer L.; Archer, Lynden A.
  • Journal of the American Chemical Society, Vol. 136, Issue 20
  • DOI: 10.1021/ja502133j

High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes
journal, August 2018


A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide
journal, August 2018


Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries
journal, October 2017

  • Adams, Brian D.; Zheng, Jianming; Ren, Xiaodi
  • Advanced Energy Materials, Vol. 8, Issue 7
  • DOI: 10.1002/aenm.201702097

The rechargeable revolution: A better battery
journal, March 2014


More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects
journal, April 2017

  • Fang, Ruopian; Zhao, Shiyong; Sun, Zhenhua
  • Advanced Materials, Vol. 29, Issue 48
  • DOI: 10.1002/adma.201606823

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM
journal, November 2017


Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF 6 and Cyclic Carbonate Additives
journal, November 2017


Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy
journal, October 2017


A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
journal, December 2015

  • Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10101

Anion-redox nanolithia cathodes for Li-ion batteries
journal, July 2016


Design of superionic polymer electrolytes
journal, February 2015


Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries
journal, September 2018


Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries
journal, January 2018

  • Suo, Liumin; Xue, Weijiang; Gobet, Mallory
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 6
  • DOI: 10.1073/pnas.1712895115

Lithium Metal Anodes with an Adaptive “Solid-Liquid” Interfacial Protective Layer
journal, March 2017

  • Liu, Kai; Pei, Allen; Lee, Hye Ryoung
  • Journal of the American Chemical Society, Vol. 139, Issue 13
  • DOI: 10.1021/jacs.6b13314

Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems
journal, January 2016

  • Wu, Bingbin; Wang, Shanyu; Evans IV, Willie J.
  • Journal of Materials Chemistry A, Vol. 4, Issue 40
  • DOI: 10.1039/C6TA05439K

High-capacity, low-tortuosity, and channel-guided lithium metal anode
journal, March 2017

  • Zhang, Ying; Luo, Wei; Wang, Chengwei
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 14
  • DOI: 10.1073/pnas.1618871114

The interplay between solid electrolyte interface (SEI) and dendritic lithium growth
journal, October 2017


High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

    Works referencing / citing this record:

    Organic quinones towards advanced electrochemical energy storage: recent advances and challenges
    journal, January 2019

    • Han, Cuiping; Li, Hongfei; Shi, Ruiying
    • Journal of Materials Chemistry A, Vol. 7, Issue 41
    • DOI: 10.1039/c9ta05252f

    Temperature-Dependent Nucleation and Growth of Dendrite-Free Lithium Metal Anodes
    journal, July 2019

    • Yan, Kang; Wang, Jiangyan; Zhao, Shuoqing
    • Angewandte Chemie International Edition, Vol. 58, Issue 33
    • DOI: 10.1002/anie.201905251

    Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte
    journal, July 2019


    Customizing a Li–metal battery that survives practical operating conditions for electric vehicle applications
    journal, January 2019

    • Hwang, Jang-Yeon; Park, Seong-Jin; Yoon, Chong S.
    • Energy & Environmental Science, Vol. 12, Issue 7
    • DOI: 10.1039/c9ee00716d

    Sulfur–nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode
    journal, January 2019

    • Chen, Mei; Zheng, Jianhui; Sheng, Ouwei
    • Journal of Materials Chemistry A, Vol. 7, Issue 31
    • DOI: 10.1039/c9ta05684j

    Temperature-Dependent Nucleation and Growth of Dendrite-Free Lithium Metal Anodes
    journal, July 2019

    • Yan, Kang; Wang, Jiangyan; Zhao, Shuoqing
    • Angewandte Chemie International Edition, Vol. 58, Issue 33
    • DOI: 10.1002/anie.201905251

    Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte
    journal, July 2019


    Customizing a Li–metal battery that survives practical operating conditions for electric vehicle applications
    journal, January 2019

    • Hwang, Jang-Yeon; Park, Seong-Jin; Yoon, Chong S.
    • Energy & Environmental Science, Vol. 12, Issue 7
    • DOI: 10.1039/c9ee00716d

    Organic quinones towards advanced electrochemical energy storage: recent advances and challenges
    journal, January 2019

    • Han, Cuiping; Li, Hongfei; Shi, Ruiying
    • Journal of Materials Chemistry A, Vol. 7, Issue 41
    • DOI: 10.1039/c9ta05252f

    Sulfur–nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode
    journal, January 2019

    • Chen, Mei; Zheng, Jianhui; Sheng, Ouwei
    • Journal of Materials Chemistry A, Vol. 7, Issue 31
    • DOI: 10.1039/c9ta05684j

    Adiponitrile (C 6 H 8 N 2 ): A New Bi‐Functional Additive for High‐Performance Li‐Metal Batteries
    journal, May 2019

    • Lee, Seon Hwa; Hwang, Jang‐Yeon; Park, Seong‐Jin
    • Advanced Functional Materials, Vol. 29, Issue 30
    • DOI: 10.1002/adfm.201902496

    Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling
    journal, December 2019

    • Zheng, Hongpeng; Wu, Shaoping; Tian, Ran
    • Advanced Functional Materials, Vol. 30, Issue 6
    • DOI: 10.1002/adfm.201906189

    Electrochemical Diagram of an Ultrathin Lithium Metal Anode in Pouch Cells
    journal, July 2019


    Copper Nitride Nanowires Printed Li with Stable Cycling for Li Metal Batteries in Carbonate Electrolytes
    journal, November 2019


    A Review of Composite Lithium Metal Anode for Practical Applications
    journal, November 2019

    • Shi, Peng; Zhang, Xue‐Qiang; Shen, Xin
    • Advanced Materials Technologies, Vol. 5, Issue 1
    • DOI: 10.1002/admt.201900806

    Thick Electrode Batteries: Principles, Opportunities, and Challenges
    journal, July 2019

    • Kuang, Yudi; Chen, Chaoji; Kirsch, Dylan
    • Advanced Energy Materials, Vol. 9, Issue 33
    • DOI: 10.1002/aenm.201901457

    Ultrathin Bilayer of Graphite/SiO 2 as Solid Interface for Reviving Li Metal Anode
    journal, August 2019

    • Pathak, Rajesh; Chen, Ke; Gurung, Ashim
    • Advanced Energy Materials, Vol. 9, Issue 36
    • DOI: 10.1002/aenm.201901486

    A Coaxial‐Interweaved Hybrid Lithium Metal Anode for Long‐Lifespan Lithium Metal Batteries
    journal, August 2019

    • Chen, Xiao‐Ru; Li, Bo‐Quan; Zhu, Cheng
    • Advanced Energy Materials, Vol. 9, Issue 39
    • DOI: 10.1002/aenm.201901932

    Plating/Stripping Behavior of Actual Lithium Metal Anode
    journal, October 2019


    High Active Material Loading in All‐Solid‐State Battery Electrode via Particle Size Optimization
    journal, November 2019

    • Shi, Tan; Tu, Qingsong; Tian, Yaosen
    • Advanced Energy Materials, Vol. 10, Issue 1
    • DOI: 10.1002/aenm.201902881

    Multifunctional Silanization Interface for High‐Energy and Low‐Gassing Lithium Metal Pouch Cells
    journal, December 2019


    Countersolvent Electrolytes for Lithium‐Metal Batteries
    journal, March 2020


    The Failure of Solid Electrolyte Interphase on Li Metal Anode: Structural Uniformity or Mechanical Strength?
    journal, March 2020


    Ecofriendly Chemical Activation of Overlithiated Layered Oxides by DNA‐Wrapped Carbon Nanotubes
    journal, January 2020

    • Kim, Ju‐Myung; Park, Jae‐Ho; Jo, Eunmi
    • Advanced Energy Materials, Vol. 10, Issue 9
    • DOI: 10.1002/aenm.201903658

    Temperature‐dependent Nucleation and Growth of Dendrite‐Free Lithium Metal Anodes
    journal, July 2019


    A Sustainable Solid Electrolyte Interphase for High‐Energy‐Density Lithium Metal Batteries Under Practical Conditions
    journal, January 2020


    A Sustainable Solid Electrolyte Interphase for High‐Energy‐Density Lithium Metal Batteries Under Practical Conditions
    journal, February 2020

    • Zhang, Xue‐Qiang; Li, Tao; Li, Bo‐Quan
    • Angewandte Chemie International Edition, Vol. 59, Issue 8
    • DOI: 10.1002/anie.201911724

    A Compact Gel Membrane Based on a Blend of PEO and PVDF for Dendrite‐Free Lithium Metal Anodes
    journal, October 2019


    Sulfur‐Rich Molybdenum Sulfide as an Anode Coating to Improve Performance of Lithium Metal Batteries
    journal, December 2019

    • Meyerson, Melissa L.; Pandit, Anish H.; Weeks, Jason A.
    • ChemElectroChem, Vol. 7, Issue 1
    • DOI: 10.1002/celc.201902007

    Microscopic Properties of Na and Li—A First Principle Study of Metal Battery Anode Materials
    journal, January 2020

    • Gaissmaier, Daniel; Borg, Matthias; Fantauzzi, Donato
    • ChemSusChem, Vol. 13, Issue 4
    • DOI: 10.1002/cssc.201902860

    Stable Li‐Metal Deposition via a 3D Nanodiamond Matrix with Ultrahigh Young's Modulus
    journal, May 2019


    Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition
    journal, October 2019


    High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes
    journal, March 2020


    Designing solid-state electrolytes for safe, energy-dense batteries
    journal, February 2020


    Molecular dynamics investigation of reduced ethylene carbonate aggregation at the onset of solid electrolyte interphase formation
    journal, January 2019

    • Boyer, Mathew J.; Hwang, Gyeong S.
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 40
    • DOI: 10.1039/c9cp04316k

    A paradigm of storage batteries
    journal, January 2019


    FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries
    journal, January 2020

    • Xue, Weijiang; Shi, Zhe; Huang, Mingjun
    • Energy & Environmental Science, Vol. 13, Issue 1
    • DOI: 10.1039/c9ee02538c

    A more stable lithium anode by mechanical constriction for solid state batteries
    journal, January 2020

    • Su, Yibo; Ye, Luhan; Fitzhugh, William
    • Energy & Environmental Science, Vol. 13, Issue 3
    • DOI: 10.1039/c9ee04007b

    Multifunctional inorganic nanomaterials for energy applications
    journal, January 2020

    • Wang, Huilin; Liang, Xitong; Wang, Jiutian
    • Nanoscale, Vol. 12, Issue 1
    • DOI: 10.1039/c9nr07008g

    The effect of local lithium surface chemistry and topography on solid electrolyte interphase composition and dendrite nucleation
    journal, January 2019

    • Meyerson, Melissa L.; Sheavly, Jonathan K.; Dolocan, Andrei
    • Journal of Materials Chemistry A, Vol. 7, Issue 24
    • DOI: 10.1039/c9ta03371h

    An organic–inorganic semi-interpenetrating network ionogel electrolyte for high-voltage lithium metal batteries
    journal, January 2020

    • Su, Anyu; Guo, Panlong; Li, Jian
    • Journal of Materials Chemistry A, Vol. 8, Issue 9
    • DOI: 10.1039/c9ta05804d

    Cationic shield mediated electrodeposition stability in metal electrodes
    journal, January 2019

    • Hao, Feng; Verma, Ankit; Mukherjee, Partha P.
    • Journal of Materials Chemistry A, Vol. 7, Issue 31
    • DOI: 10.1039/c9ta06170c

    Design strategies toward catalytic materials and cathode structures for emerging Li–CO 2 batteries
    journal, January 2019

    • Hu, Anjun; Shu, Chaozhu; Xu, Chenxi
    • Journal of Materials Chemistry A, Vol. 7, Issue 38
    • DOI: 10.1039/c9ta06506g

    Uniform Li deposition by regulating the initial nucleation barrier via a simple liquid-metal coating for a dendrite-free Li–metal anode
    journal, January 2019

    • Wei, Chuanliang; Fei, Huifang; An, Yongling
    • Journal of Materials Chemistry A, Vol. 7, Issue 32
    • DOI: 10.1039/c9ta06663b

    Novel zinc–iodine hybrid supercapacitors with a redox iodide ion electrolyte and B, N dual-doped carbon electrode exhibit boosted energy density
    journal, January 2019

    • Han, Lu; Huang, Hailong; Li, Junfeng
    • Journal of Materials Chemistry A, Vol. 7, Issue 42
    • DOI: 10.1039/c9ta07196b

    Low-tortuosity and graded lithium ion battery cathodes by ice templating
    journal, January 2019

    • Huang, Chun; Dontigny, Martin; Zaghib, Karim
    • Journal of Materials Chemistry A, Vol. 7, Issue 37
    • DOI: 10.1039/c9ta07269a

    Ultrathin Al foils to fabricate dendrite-free Li–Al anodes
    journal, January 2019

    • Wu, Lan; He, Guang; Ding, Yi
    • Journal of Materials Chemistry A, Vol. 7, Issue 44
    • DOI: 10.1039/c9ta09464d

    A copper-clad lithiophilic current collector for dendrite-free lithium metal anodes
    journal, January 2020

    • Chen, Ke; Pathak, Rajesh; Gurung, Ashim
    • Journal of Materials Chemistry A, Vol. 8, Issue 4
    • DOI: 10.1039/c9ta11237e

    Bottom-top channeling Li nucleation and growth by a gradient lithiophilic 3D conductive host for highly stable Li-metal anodes
    journal, January 2020

    • Yan, Xiaolin; Zhang, Qingfei; Xu, Wanjie
    • Journal of Materials Chemistry A, Vol. 8, Issue 4
    • DOI: 10.1039/c9ta11311h

    A materials perspective on magnesium-ion-based solid-state electrolytes
    journal, January 2020

    • Jaschin, Prem Wicram; Gao, Yirong; Li, Yao
    • Journal of Materials Chemistry A, Vol. 8, Issue 6
    • DOI: 10.1039/c9ta11729f

    Crosstalk shielding of transition metal ions for long cycling lithium–metal batteries
    journal, January 2020

    • Zhang, Xue-Qiang; Wang, Xin-Meng; Li, Bo-Quan
    • Journal of Materials Chemistry A, Vol. 8, Issue 8
    • DOI: 10.1039/c9ta12269a

    Highly reversible lithium storage in a conversion-type ZnCo 2 O 4 anode promoted by NiCl 2−x F x hydrate
    journal, January 2020

    • Deng, Jiaojiao; Yu, Xiaoliang; Tang, Jie
    • Journal of Materials Chemistry A, Vol. 8, Issue 5
    • DOI: 10.1039/c9ta13183c

    Active formation of Li-ion batteries and its effect on cycle life
    journal, August 2019

    • Pathan, Tanveerkhan S.; Rashid, Muhammad; Walker, Marc
    • Journal of Physics: Energy, Vol. 1, Issue 4
    • DOI: 10.1088/2515-7655/ab2e92

    How lithium dendrites form in liquid batteries
    journal, October 2019


    An Investigation on the Relationship between the Stability of Lithium Anode and Lithium Nitrate in Electrolyte
    journal, January 2019

    • Yu, Linghui; Song, Jiajia; Wang, Luyuan Paul
    • Journal of The Electrochemical Society, Vol. 166, Issue 15
    • DOI: 10.1149/2.0151915jes

    Stable LiNi 0.8 Co 0.1 Mn 0.1 O 2 |Li Metal Cells with Practical Loading at 30 Degrees C and Elevated Temperatures
    journal, January 2019

    • Markevich, Elena; Salitra, Gregory; Talyosef, Y.
    • Journal of The Electrochemical Society, Vol. 166, Issue 13
    • DOI: 10.1149/2.0601913jes

    Good Practices for Rechargeable Lithium Metal Batteries
    journal, January 2019

    • Wu, Bingbin; Yang, Yang; Liu, Dianying
    • Journal of The Electrochemical Society, Vol. 166, Issue 16
    • DOI: 10.1149/2.0691916jes

    Evolution of Dead Lithium Growth in Lithium Metal Batteries: Experimentally Validated Model of the Apparent Capacity Loss
    journal, January 2019

    • Xu, Shanshan; Chen, Kuan-Hung; Dasgupta, Neil P.
    • Journal of The Electrochemical Society, Vol. 166, Issue 14
    • DOI: 10.1149/2.0991914jes

    Perspective—Safety Aspects of Energy Storage Testing
    journal, January 2019

    • Bewley, Randy; Dufek, Eric J.; Egan, Steven E.
    • Journal of The Electrochemical Society, Vol. 166, Issue 8
    • DOI: 10.1149/2.1271908jes