skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling Air Electrodes with Low Platinum Loading

Abstract

A numerical model for gas-diffusion electrodes incorporating oxygen transport losses at the nanoparticle, agglomerate, and electrode scales as well as kinetic and ohmic polarizations was developed and used to simulate and optimize air electrodes for polymer-electrolyte fuel cells. The model correctly predicts trends in performance resulting from changes to the amount and distribution of platinum and relative humidity. The optimum platinum mass fraction in a Pt/C catalyst decreases as the total amount of platinum is reduced despite the concomitant increase in electrode thickness because the benefit to intra-agglomerate oxygen transport exceeds the detrimental impact on proton transport through the catalyst layer.

Authors:
ORCiD logo
Publication Date:
Research Org.:
United Technologies Corporation, Farmington, CT (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Fuel Cell Technologies Office
OSTI Identifier:
1498803
Alternate Identifier(s):
OSTI ID: 1613444
Grant/Contract Number:  
EE0007652
Resource Type:
Published Article
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Name: Journal of the Electrochemical Society Journal Volume: 166 Journal Issue: 7; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Electrochemistry; Materials Science

Citation Formats

Darling, Robert. Modeling Air Electrodes with Low Platinum Loading. United States: N. p., 2019. Web. doi:10.1149/2.0101907jes.
Darling, Robert. Modeling Air Electrodes with Low Platinum Loading. United States. doi:https://doi.org/10.1149/2.0101907jes
Darling, Robert. Sat . "Modeling Air Electrodes with Low Platinum Loading". United States. doi:https://doi.org/10.1149/2.0101907jes.
@article{osti_1498803,
title = {Modeling Air Electrodes with Low Platinum Loading},
author = {Darling, Robert},
abstractNote = {A numerical model for gas-diffusion electrodes incorporating oxygen transport losses at the nanoparticle, agglomerate, and electrode scales as well as kinetic and ohmic polarizations was developed and used to simulate and optimize air electrodes for polymer-electrolyte fuel cells. The model correctly predicts trends in performance resulting from changes to the amount and distribution of platinum and relative humidity. The optimum platinum mass fraction in a Pt/C catalyst decreases as the total amount of platinum is reduced despite the concomitant increase in electrode thickness because the benefit to intra-agglomerate oxygen transport exceeds the detrimental impact on proton transport through the catalyst layer.},
doi = {10.1149/2.0101907jes},
journal = {Journal of the Electrochemical Society},
number = 7,
volume = 166,
place = {United States},
year = {2019},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: https://doi.org/10.1149/2.0101907jes

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Hierarchical Model for Oxygen Transport in Agglomerates in the Cathode Catalyst Layer of a Polymer-Electrolyte Fuel Cell
journal, January 2018

  • Darling, Robert M.
  • Journal of The Electrochemical Society, Vol. 165, Issue 9
  • DOI: 10.1149/2.1231807jes

Improved Preparation Process of Very-Low-Platinum-Loading Electrodes for Polymer Electrolyte Fuel Cells
journal, January 1998

  • Uchida, Makoto
  • Journal of The Electrochemical Society, Vol. 145, Issue 11
  • DOI: 10.1149/1.1838863

New Insights into Perfluorinated Sulfonic-Acid Ionomers
journal, January 2017


Analysis of Reactant Gas Transport in Catalyst Layers; Effect of Pt-loadings
conference, January 2009

  • Sakai, Kei; Sato, Kazuyuki; Mashio, Tetsuya
  • 216th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.3210674

Communication—Modeling Polymer-Electrolyte Fuel-Cell Agglomerates with Double-Trap Kinetics
journal, January 2017

  • Pant, Lalit M.; Weber, Adam Z.
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0111711jes

Impact of Platinum Loading and Catalyst Layer Structure on PEMFC Performance
journal, January 2013

  • Owejan, Jon P.; Owejan, Jeanette E.; Gu, Wenbin
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.072308jes

A Modified Agglomerate Model with Discrete Catalyst Particles for the PEM Fuel Cell Catalyst Layer
journal, January 2013

  • Cetinbas, Firat C.; Advani, Suresh G.; Prasad, Ajay K.
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.017308jes

Modified thin film and agglomerate models for active layers of P.E. fuel cells
journal, April 1998


Analysis of Oxygen-Transport Diffusion Resistance in Proton-Exchange-Membrane Fuel Cells
journal, January 2011

  • Nonoyama, Nobuaki; Okazaki, Shinobu; Weber, Adam Z.
  • Journal of The Electrochemical Society, Vol. 158, Issue 4
  • DOI: 10.1149/1.3546038

Measurement of Oxygen Transport Resistance in PEM Fuel Cells by Limiting Current Methods
journal, January 2009

  • Baker, Daniel R.; Caulk, David A.; Neyerlin, Kenneth C.
  • Journal of The Electrochemical Society, Vol. 156, Issue 9
  • DOI: 10.1149/1.3152226

The Impact of Platinum Loading on Oxygen Transport Resistance
journal, January 2012

  • Greszler, Thomas A.; Caulk, David; Sinha, Puneet
  • Journal of The Electrochemical Society, Vol. 159, Issue 12
  • DOI: 10.1149/2.061212jes

The Mechanism of Operation of the Teflon-Bonded Gas Diffusion Electrode: A Mathematical Model
journal, January 1969

  • Giner, J.; Hunter, C.
  • Journal of The Electrochemical Society, Vol. 116, Issue 8
  • DOI: 10.1149/1.2412232

Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs
journal, March 2005

  • Gasteiger, Hubert A.; Kocha, Shyam S.; Sompalli, Bhaskar
  • Applied Catalysis B: Environmental, Vol. 56, Issue 1-2, p. 9-35
  • DOI: 10.1016/j.apcatb.2004.06.021

Proton Conduction in PEM Fuel Cell Cathodes: Effects of Electrode Thickness and Ionomer Equivalent Weight
journal, January 2010

  • Liu, Yuxiu; Ji, Chunxin; Gu, Wenbin
  • Journal of The Electrochemical Society, Vol. 157, Issue 8
  • DOI: 10.1149/1.3435323

Inorganic-organic ZnO Based Heterostructures for Lighting
conference, January 2009

  • Willander, Magnus; Bano, Nargis; Nur, Omer
  • 215th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.3222725

A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells
journal, January 2014

  • Weber, Adam Z.; Borup, Rodney L.; Darling, Robert M.
  • Journal of The Electrochemical Society, Vol. 161, Issue 12
  • DOI: 10.1149/2.0751412jes

Transport in Polymer-Electrolyte Membranes
journal, January 2004

  • Weber, Adam Z.; Newman, John
  • Journal of The Electrochemical Society, Vol. 151, Issue 2
  • DOI: 10.1149/1.1639157

Modelling of a double-layered PTFE-bonded oxygen electrode
journal, January 1987


Three dimensional proton exchange membrane fuel cell cathode model using a modified agglomerate approach based on discrete catalyst particles
journal, March 2014


Water Uptake of Perfluorosulfonic Acid Membranes from Liquid Water and Water Vapor
journal, January 1994

  • Hinatsu, James T.
  • Journal of The Electrochemical Society, Vol. 141, Issue 6
  • DOI: 10.1149/1.2054951

Editors' Choice—Connecting Fuel Cell Catalyst Nanostructure and Accessibility Using Quantitative Cryo-STEM Tomography
journal, January 2018

  • Padgett, Elliot; Andrejevic, Nina; Liu, Zhongyi
  • Journal of The Electrochemical Society, Vol. 165, Issue 3
  • DOI: 10.1149/2.0541803jes

Unexplained transport resistances for low-loaded fuel-cell catalyst layers
journal, January 2014

  • Weber, Adam Z.; Kusoglu, Ahmet
  • J. Mater. Chem. A, Vol. 2, Issue 41
  • DOI: 10.1039/C4TA02952F

Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes
journal, July 1991

  • Zawodzinski, Thomas A.; Neeman, Michal; Sillerud, Laurel O.
  • The Journal of Physical Chemistry, Vol. 95, Issue 15
  • DOI: 10.1021/j100168a060

Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode
journal, January 2002

  • Jaouen, Frédéric; Lindbergh, Göran; Sundholm, Göran
  • Journal of The Electrochemical Society, Vol. 149, Issue 4
  • DOI: 10.1149/1.1456916

On the Micro-, Meso-, and Macroporous Structures of Polymer Electrolyte Membrane Fuel Cell Catalyst Layers
journal, January 2010

  • Soboleva, Tatyana; Zhao, Xinsheng; Malek, Kourosh
  • ACS Applied Materials & Interfaces, Vol. 2, Issue 2
  • DOI: 10.1021/am900600y

Proton Conduction and Oxygen Reduction Kinetics in PEM Fuel Cell Cathodes: Effects of Ionomer-to-Carbon Ratio and Relative Humidity
journal, January 2009

  • Liu, Yuxiu; Murphy, Michael W.; Baker, Daniel R.
  • Journal of The Electrochemical Society, Vol. 156, Issue 8
  • DOI: 10.1149/1.3143965