DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Failure Assessments for MQXF Magnet Support Structure with a Graded Approach

Journal Article · · IEEE Transactions on Applied Superconductivity

© 2002-2011 IEEE. The high luminosity large hadron collider (LHC) upgrade requires new quadrupoles, MQXF, to replace the present LHC inner triplet magnets. The MQXFA magnet is the first prototype that has a 150-mm aperture and uses Nb3Sn superconducting technology in a 4.2-m magnetic length structure. The support structure design of the MQXFA magnet is based on the bladder-and-key technology, where a relatively low pre-stress at room temperature is increased to the final preload targets during the cool-down by the differential thermal contraction of the various components. The magnet support structure components experience different load levels from pre-load to cool-down and excitation. Consequently, a few parts experience high stresses that may cause localized plastic deformations or internal fracture development. The concept presented in this paper for the failure assessment of support structures integrates nonlinear finite-element (FE) analysis with detailed sub-models and fracture mechanics into an advanced engineering tool. The nonlinear FE solutions enable estimations of the structural response to the given loads, and the advanced fracture analysis with failure assessment diagram assesses the structure safety index of results obtained from the FE model. The paper describes how the MQXFA end-shell segments are being optimized based on the failure analyses.

Research Organization:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC), High Energy Physics (HEP)
Contributing Organization:
LARP
Grant/Contract Number:
AC02-07CH11359; AC02-05CH11231
OSTI ID:
1498548
Alternate ID(s):
OSTI ID: 1604694
Report Number(s):
FERMILAB-PUB-19-057-TD; 1724042
Journal Information:
IEEE Transactions on Applied Superconductivity, Vol. 29, Issue 5; ISSN 1051-8223
Publisher:
Institute of Electrical and Electronics Engineers (IEEE)Copyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science