skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: EStokTP: Electronic Structure to Temperature- and Pressure-Dependent Rate Constants—A Code for Automatically Predicting the Thermal Kinetics of Reactions

Abstract

A priori rate predictions for gas phase reactions have undergone a gradual but dramatic transformation, with current predictions often rivaling the accuracy of the best available experimental data. The utility of such kinetic predictions would be greatly magnified if they could more readily be implemented for large numbers of systems. Here, we report the development of a new computational environment, namely, EStokTP, that reduces the human effort involved in the rate prediction for single channel reactions essentially to the specification of the methodology to be employed. The code can also be used to obtain all the necessary master equation building blocks for more complex reactions. In general, the prediction of rate constants involves two steps, with the first consisting of a set of electronic structure calculations and the second in the application of some form of kinetic solver, such as a transition state theory (TST)-based master equation solver. EStokTP provides a fully integrated treatment of both steps through calls to external codes to perform first the electronic structure and then the master equation calculations. It focuses on generating, extracting, and organizing the necessary structural properties from a sequence of calls to electronic structure codes, with robust automatic failure recovery optionsmore » to limit human intervention. The code implements one or multidimensional hindered rotor treatments of internal torsional modes (with automated projection from the Hessian and with optional vibrationally adiabatic corrections), Eckart and multidimensional tunneling models (such as small curvature theory), and variational treatments (based on intrinsic reaction coordinate following). This focus on a robust implementation of high-level TST methods allows the code to be used in high accuracy studies of large sets of reactions, as illustrated here through sample studies of a few hundred reactions. At present, the following reaction types are implemented in EStokTP: abstraction, addition, isomerization, and beta-decomposition. Finally, preliminary protocols for treating barrierless reactions and multiple-well and/or multiple-channel potential energy surfaces are also illustrated.« less

Authors:
ORCiD logo [1];  [1];  [2]; ORCiD logo [2]
  1. Politecnico di Milano, Milan (Italy). Dept. of Chemistry, Materials and Chemical Engineering “G. Natta"
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1498509
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Theory and Computation
Additional Journal Information:
Journal Volume: 15; Journal Issue: 2; Journal ID: ISSN 1549-9618
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Cavallotti, C., Pelucchi, M., Georgievskii, Y., and Klippenstein, S. J. EStokTP: Electronic Structure to Temperature- and Pressure-Dependent Rate Constants—A Code for Automatically Predicting the Thermal Kinetics of Reactions. United States: N. p., 2018. Web. https://doi.org/10.1021/acs.jctc.8b00701.
Cavallotti, C., Pelucchi, M., Georgievskii, Y., & Klippenstein, S. J. EStokTP: Electronic Structure to Temperature- and Pressure-Dependent Rate Constants—A Code for Automatically Predicting the Thermal Kinetics of Reactions. United States. https://doi.org/10.1021/acs.jctc.8b00701
Cavallotti, C., Pelucchi, M., Georgievskii, Y., and Klippenstein, S. J. Fri . "EStokTP: Electronic Structure to Temperature- and Pressure-Dependent Rate Constants—A Code for Automatically Predicting the Thermal Kinetics of Reactions". United States. https://doi.org/10.1021/acs.jctc.8b00701. https://www.osti.gov/servlets/purl/1498509.
@article{osti_1498509,
title = {EStokTP: Electronic Structure to Temperature- and Pressure-Dependent Rate Constants—A Code for Automatically Predicting the Thermal Kinetics of Reactions},
author = {Cavallotti, C. and Pelucchi, M. and Georgievskii, Y. and Klippenstein, S. J.},
abstractNote = {A priori rate predictions for gas phase reactions have undergone a gradual but dramatic transformation, with current predictions often rivaling the accuracy of the best available experimental data. The utility of such kinetic predictions would be greatly magnified if they could more readily be implemented for large numbers of systems. Here, we report the development of a new computational environment, namely, EStokTP, that reduces the human effort involved in the rate prediction for single channel reactions essentially to the specification of the methodology to be employed. The code can also be used to obtain all the necessary master equation building blocks for more complex reactions. In general, the prediction of rate constants involves two steps, with the first consisting of a set of electronic structure calculations and the second in the application of some form of kinetic solver, such as a transition state theory (TST)-based master equation solver. EStokTP provides a fully integrated treatment of both steps through calls to external codes to perform first the electronic structure and then the master equation calculations. It focuses on generating, extracting, and organizing the necessary structural properties from a sequence of calls to electronic structure codes, with robust automatic failure recovery options to limit human intervention. The code implements one or multidimensional hindered rotor treatments of internal torsional modes (with automated projection from the Hessian and with optional vibrationally adiabatic corrections), Eckart and multidimensional tunneling models (such as small curvature theory), and variational treatments (based on intrinsic reaction coordinate following). This focus on a robust implementation of high-level TST methods allows the code to be used in high accuracy studies of large sets of reactions, as illustrated here through sample studies of a few hundred reactions. At present, the following reaction types are implemented in EStokTP: abstraction, addition, isomerization, and beta-decomposition. Finally, preliminary protocols for treating barrierless reactions and multiple-well and/or multiple-channel potential energy surfaces are also illustrated.},
doi = {10.1021/acs.jctc.8b00701},
journal = {Journal of Chemical Theory and Computation},
number = 2,
volume = 15,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

From theoretical reaction dynamics to chemical modeling of combustion
journal, January 2017


H-Abstraction reactions by OH, HO 2 , O, O 2 and benzyl radical addition to O 2 and their implications for kinetic modelling of toluene oxidation
journal, January 2018

  • Pelucchi, M.; Cavallotti, C.; Faravelli, T.
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 16
  • DOI: 10.1039/C7CP07779C

Pressure dependent kinetic analysis of pathways to naphthalene from cyclopentadienyl recombination
journal, January 2018


Ab initio study of the influence of resonance stabilization on intramolecular ring closure reactions of hydrocarbon radicals
journal, January 2016

  • Wang, Kun; Villano, Stephanie M.; Dean, Anthony M.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 12
  • DOI: 10.1039/C5CP06994G

Predictive kinetics on the formation and decomposition of ethylbenzene
journal, January 2017


Computational studies on the reactions of 3-butenyl and 3-butenylperoxy radicals: Reactions of 3-Butenyl and 3-Butenylperoxy Radicals
journal, March 2010

  • Miyoshi, Akira
  • International Journal of Chemical Kinetics, Vol. 42, Issue 5
  • DOI: 10.1002/kin.20478

Temperature- and pressure-dependent rate coefficients for the HACA pathways from benzene to naphthalene
journal, January 2017

  • Mebel, Alexander M.; Georgievskii, Yuri; Jasper, Ahren W.
  • Proceedings of the Combustion Institute, Vol. 36, Issue 1
  • DOI: 10.1016/j.proci.2016.07.013

Theoretical kinetics of O + C2H4
journal, January 2017

  • Li, Xiaohu; Jasper, Ahren W.; Zádor, Judit
  • Proceedings of the Combustion Institute, Vol. 36, Issue 1
  • DOI: 10.1016/j.proci.2016.06.053

Experimental and Theoretical Studies on the Dynamics of the O( 3 P) + Propene Reaction: Primary Products, Branching Ratios, and Role of Intersystem Crossing
journal, March 2015

  • Leonori, Francesca; Balucani, Nadia; Nevrly, Vaclav
  • The Journal of Physical Chemistry C, Vol. 119, Issue 26
  • DOI: 10.1021/jp512670y

Comparison of Three Isoelectronic Multiple-Well Reaction Systems: OH + CH 2 O, OH + CH 2 CH 2 , and OH + CH 2 NH
journal, February 2015

  • Akbar Ali, Mohamad; Barker, John R.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 28
  • DOI: 10.1021/acs.jpca.5b00910

Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry
journal, August 2017

  • Burke, Michael P.; Klippenstein, Stephen J.
  • Nature Chemistry, Vol. 9, Issue 11
  • DOI: 10.1038/nchem.2842

A Theoretical and Computational Analysis of the Methyl-Vinyl + O 2 Reaction and Its Effects on Propene Combustion
journal, November 2017

  • Chen, Xi; Goldsmith, C. Franklin
  • The Journal of Physical Chemistry A, Vol. 121, Issue 48
  • DOI: 10.1021/acs.jpca.7b07594

Discussion of the Separation of Chemical and Relaxational Kinetics of Chemically Activated Intermediates in Master Equation Simulations
journal, February 2017


Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms
journal, June 2016

  • Gao, Connie W.; Allen, Joshua W.; Green, William H.
  • Computer Physics Communications, Vol. 203
  • DOI: 10.1016/j.cpc.2016.02.013

Predictive Theory for Hydrogen Atom−Hydrocarbon Radical Association Kinetics
journal, June 2005

  • Harding, Lawrence B.; Georgievskii, Yuri; Klippenstein, Stephen J.
  • The Journal of Physical Chemistry A, Vol. 109, Issue 21
  • DOI: 10.1021/jp0508608

Reformulation and Solution of the Master Equation for Multiple-Well Chemical Reactions
journal, May 2013

  • Georgievskii, Yuri; Miller, James A.; Burke, Michael P.
  • The Journal of Physical Chemistry A, Vol. 117, Issue 46
  • DOI: 10.1021/jp4060704

Multidimensional Effects in Nonadiabatic Statistical Theories of Spin-Forbidden Kinetics: A Case Study of 3 O + CO → CO 2
journal, February 2015

  • Jasper, Ahren W.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 28
  • DOI: 10.1021/jp512942w

Multiple-Well, multiple-path unimolecular reaction systems. I. MultiWell computer program suite
journal, January 2001

  • Barker, John R.
  • International Journal of Chemical Kinetics, Vol. 33, Issue 4
  • DOI: 10.1002/kin.1017

MESMER: An Open-Source Master Equation Solver for Multi-Energy Well Reactions
journal, September 2012

  • Glowacki, David R.; Liang, Chi-Hsiu; Morley, Christopher
  • The Journal of Physical Chemistry A, Vol. 116, Issue 38
  • DOI: 10.1021/jp3051033

The Penetration of a Potential Barrier by Electrons
journal, June 1930


Molecular modeling of the kinetic isotope effect for the [1,5]-sigmatropic rearrangement of cis-1,3-pentadiene
journal, March 1993

  • Liu, Yi Ping; Lynch, Gillian C.; Truong, Thanh N.
  • Journal of the American Chemical Society, Vol. 115, Issue 6
  • DOI: 10.1021/ja00059a041

Automated computational thermochemistry for butane oxidation: A prelude to predictive automated combustion kinetics
journal, January 2019

  • Keçeli, Murat; Elliott, Sarah N.; Li, Yi-Pei
  • Proceedings of the Combustion Institute, Vol. 37, Issue 1
  • DOI: 10.1016/j.proci.2018.07.113

Small ester combustion chemistry: Computational kinetics and experimental study of methyl acetate and ethyl acetate
journal, January 2019

  • Ahmed, Ahfaz; Pitz, William J.; Cavallotti, Carlo
  • Proceedings of the Combustion Institute, Vol. 37, Issue 1
  • DOI: 10.1016/j.proci.2018.06.178

Systematic optimization of long-range corrected hybrid density functionals
journal, February 2008

  • Chai, Jeng-Da; Head-Gordon, Martin
  • The Journal of Chemical Physics, Vol. 128, Issue 8
  • DOI: 10.1063/1.2834918

Semiempirical hybrid density functional with perturbative second-order correlation
journal, January 2006

  • Grimme, Stefan
  • The Journal of Chemical Physics, Vol. 124, Issue 3
  • DOI: 10.1063/1.2148954

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions
journal, May 1992

  • Kendall, Rick A.; Dunning, Thom H.; Harrison, Robert J.
  • The Journal of Chemical Physics, Vol. 96, Issue 9
  • DOI: 10.1063/1.462569

Anharmonic Densities of States for Vibrationally Excited I (H 2 O), (H 2 O) 2 , and I (H 2 O) 2
journal, June 2018

  • Ma, Xinyou; Yang, Nan; Johnson, Mark A.
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 8
  • DOI: 10.1021/acs.jctc.8b00300

Prediction of Experimentally Unavailable Product Branching Ratios for Biofuel Combustion: The Role of Anharmonicity in the Reaction of Isobutanol with OH
journal, March 2014

  • Zheng, Jingjing; Meana-Pañeda, Rubén; Truhlar, Donald G.
  • Journal of the American Chemical Society, Vol. 136, Issue 13
  • DOI: 10.1021/ja5011288

Anharmonic vibrational properties by a fully automated second-order perturbative approach
journal, January 2005

  • Barone, Vincenzo
  • The Journal of Chemical Physics, Vol. 122, Issue 1
  • DOI: 10.1063/1.1824881

Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries
journal, August 2010

  • Alecu, I. M.; Zheng, Jingjing; Zhao, Yan
  • Journal of Chemical Theory and Computation, Vol. 6, Issue 9
  • DOI: 10.1021/ct100326h

Intramolecular Hydrogen Migration in Alkylperoxy and Hydroperoxyalkylperoxy Radicals: Accurate Treatment of Hindered Rotors
journal, May 2010

  • Sharma, Sandeep; Raman, Sumathy; Green, William H.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 18
  • DOI: 10.1021/jp9098792

Symmetry numbers, not statistical factors, should be used in absolute rate theory and in Broensted relations
journal, May 1978

  • Pollak, Eli; Pechukas, Philip
  • Journal of the American Chemical Society, Vol. 100, Issue 10
  • DOI: 10.1021/ja00478a009

Symmetry numbers and chemical reaction rates
journal, July 2007

  • Fernández-Ramos, Antonio; Ellingson, Benjamin A.; Meana-Pañeda, Rubén
  • Theoretical Chemistry Accounts, Vol. 118, Issue 4
  • DOI: 10.1007/s00214-007-0328-0

The definition of reaction coordinates for reaction‐path dynamics
journal, June 1991

  • Natanson, Gregory A.; Garrett, Bruce C.; Truong, Thanh N.
  • The Journal of Chemical Physics, Vol. 94, Issue 12
  • DOI: 10.1063/1.460123

Reaction‐path potential and vibrational frequencies in terms of curvilinear internal coordinates
journal, February 1995

  • Jackels, Charles F.; Gu, Zhen; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 102, Issue 8
  • DOI: 10.1063/1.468630

Reaction path Hamiltonian for polyatomic molecules
journal, January 1980

  • Miller, William H.; Handy, Nicholas C.; Adams, John E.
  • The Journal of Chemical Physics, Vol. 72, Issue 1
  • DOI: 10.1063/1.438959

On Detailed Balancing and Statistical Theories of Chemical Kinetics
journal, May 1965

  • Pechukas, Philip; Light, John C.
  • The Journal of Chemical Physics, Vol. 42, Issue 9
  • DOI: 10.1063/1.1696411

Lennard–Jones parameters for combustion and chemical kinetics modeling from full-dimensional intermolecular potentials
journal, January 2014


“Third-Body” collision efficiencies for combustion modeling: Hydrocarbons in atomic and diatomic baths
journal, January 2015

  • Jasper, Ahren W.; Oana, C. Melania; Miller, James A.
  • Proceedings of the Combustion Institute, Vol. 35, Issue 1
  • DOI: 10.1016/j.proci.2014.05.105

Growing string method with interpolation and optimization in internal coordinates: Method and examples
journal, May 2013

  • Zimmerman, Paul M.
  • The Journal of Chemical Physics, Vol. 138, Issue 18
  • DOI: 10.1063/1.4804162

Combining Synchronous Transit and Quasi-Newton Methods to Find Transition States
journal, January 1993

  • Peng, Chunyang; Bernhard Schlegel, H.
  • Israel Journal of Chemistry, Vol. 33, Issue 4
  • DOI: 10.1002/ijch.199300051

Importance of nonseparability in quantum mechanical transition-state theory
journal, August 1976


A SN2 Reaction That Avoids Its Deep Potential Energy Minimum
journal, May 2002


Direct Dynamics Simulations of the Product Channels and Atomistic Mechanisms for the OH + CH 3 I Reaction. Comparison with Experiment
journal, April 2013

  • Xie, Jing; Sun, Rui; Siebert, Matthew R.
  • The Journal of Physical Chemistry A, Vol. 117, Issue 32
  • DOI: 10.1021/jp4008027

Predictive a priori pressure-dependent kinetics
journal, December 2014


High-Temperature Measurements of the Reactions of OH with Small Methyl Esters: Methyl Formate, Methyl Acetate, Methyl Propanoate, and Methyl Butanoate
journal, December 2012

  • Lam, King-Yiu; Davidson, David F.; Hanson, Ronald K.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 50
  • DOI: 10.1021/jp310256j

Kinetic Studies of OH Reactions with a Series of Acetates
journal, January 1996

  • El Boudali, A.; Le Calvé, S.; Le Bras, G.
  • The Journal of Physical Chemistry, Vol. 100, Issue 30
  • DOI: 10.1021/jp9606218

Kinetics and mechanism of the atmospheric oxidation of tertiary amyl methyl ether
journal, May 1995

  • Smith, D. F.; Mciver, C. D.; Kleindienst, T. E.
  • International Journal of Chemical Kinetics, Vol. 27, Issue 5
  • DOI: 10.1002/kin.550270505

Rate constants for H + CH4, CH3 + H2, and CH4 dissociation at high temperature
journal, January 2001

  • Sutherland, J. W.; Su, M. -C.; Michael, J. V.
  • International Journal of Chemical Kinetics, Vol. 33, Issue 11
  • DOI: 10.1002/kin.1064

Reflected Shock Tube Studies of High-Temperature Rate Constants for OH + CH 4 → CH 3 + H 2 O and CH 3 + NO 2 → CH 3 O + NO
journal, March 2005

  • Srinivasan, N. K.; Su, M. -C.; Sutherland, J. W.
  • The Journal of Physical Chemistry A, Vol. 109, Issue 9
  • DOI: 10.1021/jp040679j

Determination of the rate constant for HO 2 + CH 4 → H 2 O 2 + CH 3 at 443 °C
journal, January 1988

  • Baldwin, Roy R.; Jones, P. Neil; Walker, Raymond W.
  • J. Chem. Soc., Faraday Trans. 2, Vol. 84, Issue 2
  • DOI: 10.1039/F29888400199

Reactions of Atomic Oxygen (3P) with Selected Alkanes
journal, November 1994

  • Miyoshi, Akira; Tsuchiya, Kentaro; Yamauchi, Noboru
  • The Journal of Physical Chemistry, Vol. 98, Issue 44
  • DOI: 10.1021/j100095a031

High-temperature rate constants for H/D + C2H6 and C3H8
journal, January 2012

  • Sivaramakrishnan, R.; Michael, J. V.; Ruscic, B.
  • International Journal of Chemical Kinetics, Vol. 44, Issue 3
  • DOI: 10.1002/kin.20607

Shock Tube Studies Using a Novel Multipass Absorption Cell:  Rate Constant Results For OH + H 2 and OH + C 2 H 6
journal, June 2004

  • Krasnoperov, L. N.; Michael, J. V.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 26
  • DOI: 10.1021/jp040186e

Shock Tube/Laser Absorption Measurements of the Reaction Rates of OH with Ethylene and Propene
journal, November 2010

  • Vasu, Subith S.; Hong, Zekai; Davidson, David F.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 43
  • DOI: 10.1021/jp106049s

Absolute Rate Coefficients of the Reactions of C 2 H with NO and H 2 between 295 and 440 K
journal, January 1996

  • Peeters, Jozef; Van Look, Hilde; Ceursters, Benny
  • The Journal of Physical Chemistry, Vol. 100, Issue 37
  • DOI: 10.1021/jp960201i

Rate constants for the reaction of ground state atomic oxygen with methanol
journal, September 1981

  • Keil, David G.; Tanzawa, Tsuneo; Skolni, Edward G.
  • The Journal of Chemical Physics, Vol. 75, Issue 6
  • DOI: 10.1063/1.442379

Roaming radicals in the thermal decomposition of dimethyl ether: Experiment and theory
journal, April 2011


Experimental and Theoretical Study of the Kinetics and Mechanism of the Reaction of OH Radicals with Dimethyl Ether
journal, October 2013

  • Carr, S. A.; Still, T. J.; Blitz, M. A.
  • The Journal of Physical Chemistry A, Vol. 117, Issue 44
  • DOI: 10.1021/jp4070278

High-Temperature Shock Tube Measurements of Dimethyl Ether Decomposition and the Reaction of Dimethyl Ether with OH
journal, August 2009

  • Cook, Robert D.; Davidson, David F.; Hanson, Ronald K.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 37
  • DOI: 10.1021/jp902403n

A flash photolysis resonance fluorescence investigation of the reactions of Oxygen O(3P) atoms with aliphatic ethers and diethers in the gas phase
journal, July 1990

  • Liu, Renzhang; Dagaut, Philippe; Huie, Robert E.
  • International Journal of Chemical Kinetics, Vol. 22, Issue 7
  • DOI: 10.1002/kin.550220707

Shock-tube studies on the reactions of dimethyl ether with oxygen and hydrogen atoms
journal, January 2006

  • Takahashi, K.; Yamamoto, O.; Inomata, T.
  • International Journal of Chemical Kinetics, Vol. 39, Issue 2
  • DOI: 10.1002/kin.20225

An Investigation of the D/H Addition−Elimination and H Atom Abstraction Channels in the Reaction D + H 2 CO in the Temperature Range 296 K ≤ T ≤ 780 K
journal, November 2000

  • Oehlers, C.; Wagner, H. Gg.; Ziemer, H.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 45
  • DOI: 10.1021/jp0012496

Direct measurements of the reaction OH + CH2O ? HCO + H2O at high temperatures
journal, January 2004

  • Vasudevan, Venkatesh; Davidson, David F.; Hanson, Ronald K.
  • International Journal of Chemical Kinetics, Vol. 37, Issue 2
  • DOI: 10.1002/kin.20056

Determination of the gas-phase reactivity of hydroxyl with chlorinated methanes at high temperature: Effects of laser/thermal photochemistry
journal, January 1993

  • Taylor, Philip H.; Jiang, Zhen; Dellinger, Barry
  • International Journal of Chemical Kinetics, Vol. 25, Issue 1
  • DOI: 10.1002/kin.550250103

A kinetics study of the O(3P)+CH3Cl reaction over the 556–1485 K range by the HTP and LP-ST techniques
journal, January 1992


Non-Arrhenius temperature dependence of the rate constant for the H + H2S reaction
journal, February 1992


Rate of the reaction OH + H 2 S → SH + H 2 O over an extended temperature range
journal, December 1973

  • Westenberg, A. A.; deHaas, N.
  • The Journal of Chemical Physics, Vol. 59, Issue 12
  • DOI: 10.1063/1.1680055

Rate constant for the reaction, atomic hydrogen + ammonia, over the temperature range, 750-1777 K
journal, January 1986

  • Michael, J. V.; Sutherland, J. W.; Klemm, R. B.
  • The Journal of Physical Chemistry, Vol. 90, Issue 3
  • DOI: 10.1021/j100275a029

Kinetics of the reaction hydroxyl + ammonia in the range 273-433 K
journal, June 1990

  • Diau, Eric Wei Guang.; Tso, Tai Ly.; Lee, Yuan Pern.
  • The Journal of Physical Chemistry, Vol. 94, Issue 13
  • DOI: 10.1021/j100376a018

Chemical Kinetic Data Sheets for High‐Temperature Reactions. Part II
journal, November 1991

  • Cohen, N.; Westberg, K. R.
  • Journal of Physical and Chemical Reference Data, Vol. 20, Issue 6
  • DOI: 10.1063/1.555901

Experimental and theoretical study of the gas phase reaction of ethynyl radical with methane (HCC+CH4)
journal, October 2000


Kinetics of Reactions of Cl Atoms with Methane and Chlorinated Methanes
journal, November 2002

  • Bryukov, Mikhail G.; Slagle, Irene R.; Knyazev, Vadim D.
  • The Journal of Physical Chemistry A, Vol. 106, Issue 44
  • DOI: 10.1021/jp0257909

Kinetics of hydrogen abstraction by amino radicals from alkanes in the gas phase. A flash photolysis-laser resonance absorption study
journal, April 1980

  • Demissy, M.; Lesclaux, R.
  • Journal of the American Chemical Society, Vol. 102, Issue 9
  • DOI: 10.1021/ja00529a005

Direct measurements of the reaction NH2+CH4→NH3+CH3 in temperature range 743≤T/K≤1023
journal, January 1988


Rate Coefficients of C 2 H with C 2 H 4 , C 2 H 6 , and H 2 from 150 to 359 K
journal, January 1996

  • Opansky, Brian J.; Leone, Stephen R.
  • The Journal of Physical Chemistry, Vol. 100, Issue 51
  • DOI: 10.1021/jp9619604

A Low Temperature Study of the Reactions of Atomic Chlorine with Simple Alkanes
journal, September 2009

  • Hickson, Kevin M.; Bergeat, Astrid; Costes, Michel
  • The Journal of Physical Chemistry A, Vol. 114, Issue 9
  • DOI: 10.1021/jp9061253

Kinetics of Reactions of Cl Atoms with Ethane, Chloroethane, and 1,1-Dichloroethane
journal, July 2003

  • Bryukov, Mikhail G.; Slagle, Irene R.; Knyazev, Vadim D.
  • The Journal of Physical Chemistry A, Vol. 107, Issue 34
  • DOI: 10.1021/jp0275138

Kinetics of the Reactions of Chlorine Atoms with C 2 H 4 ( k 1 ) and C 2 H 2 ( k 2 ):  A Determination of Δ H f,298 ° for C 2 H 3
journal, January 1996

  • Kaiser, E. W.; Wallington, T. J.
  • The Journal of Physical Chemistry, Vol. 100, Issue 10
  • DOI: 10.1021/jp953178u

Rate coefficients and production of vibrationally excited HCl from the reactions of chlorine atoms with methanol, ethanol, acetaldehyde and formaldehyde
journal, January 2004

  • Seakins, Paul W.; Orlando, John J.; Tyndall, Geoffrey S.
  • Physical Chemistry Chemical Physics, Vol. 6, Issue 9
  • DOI: 10.1039/b402167c

Reflected Shock Tube Studies of High-Temperature Rate Constants for CH 3 + O 2 , H 2 CO + O 2 , and OH + O 2
journal, September 2005

  • Srinivasan, N. K.; Su, M. -C.; Sutherland, J. W.
  • The Journal of Physical Chemistry A, Vol. 109, Issue 35
  • DOI: 10.1021/jp0581330

Kinetic study of the reaction of chlorine atoms with chloromethane in the gas phase
journal, July 2009


Analysis of acetic acid gas phase reactivity: Rate constant estimation and kinetic simulations
journal, January 2019

  • Cavallotti, Carlo; Pelucchi, Matteo; Frassoldati, Alessio
  • Proceedings of the Combustion Institute, Vol. 37, Issue 1
  • DOI: 10.1016/j.proci.2018.06.137

Microcanonical rates for the unimolecular dissociation of the ethyl radical
journal, March 1999

  • Gilbert, Thomas; Grebner, Thomas L.; Fischer, Ingo
  • The Journal of Chemical Physics, Vol. 110, Issue 12
  • DOI: 10.1063/1.478445

An ab Initio Study of the Transition State and Forward and Reverse Rate Constants for C 2 H 5 ⇌ H + C 2 H 4
journal, January 1996

  • Hase, William L.; Schlegel, H. Bernhard; Balbyshev, Vsevolod
  • The Journal of Physical Chemistry, Vol. 100, Issue 13
  • DOI: 10.1021/jp9528875

Temperature and pressure dependence of the rate constant for the addition of hydrogen atoms to ethylene
journal, June 1987

  • Lightfoot, Phillip D.; Pilling, Michael J.
  • The Journal of Physical Chemistry, Vol. 91, Issue 12
  • DOI: 10.1021/j100296a054

Absolute rate of the reaction of atomic hydrogen with ethylene from 198 to 320 K at high pressure
journal, February 1978

  • Lee, J. H.; Michael, J. V.; Payne, W. A.
  • The Journal of Chemical Physics, Vol. 68, Issue 4
  • DOI: 10.1063/1.435899

Direct observation of equilibration in the system hydrogen atom + ethylene .dblharw. ethyl radical. Standard enthalpy of formation of the ethyl radical
journal, January 1993

  • Hanning-Lee, Mark A.; Green, Nicholas J. B.; Pilling, Michael J.
  • The Journal of Physical Chemistry, Vol. 97, Issue 4
  • DOI: 10.1021/j100106a011

The Rate Constants of the Reactions of Hydrogen and Oxygen Atoms with Fluoroethylenes
journal, February 1981

  • Sugawara, Ko-ichi; Okazaki, Kiyoshi; Sato, Shin
  • Bulletin of the Chemical Society of Japan, Vol. 54, Issue 2
  • DOI: 10.1246/bcsj.54.358

Determination of the temperature and pressure dependence of the reaction OH + C 2 H 4 from 200–400 K using experimental and master equation analyses
journal, January 2006

  • Cleary, Patricia A.; Romero, Maria Teresa Baeza; Blitz, Mark A.
  • Phys. Chem. Chem. Phys., Vol. 8, Issue 48
  • DOI: 10.1039/B612127F

Experimental and Theoretical Study of the C 2 H 3 ⇄ H + C 2 H 2 Reaction. Tunneling and the Shape of Falloff Curves
journal, January 1996

  • Knyazev, Vadim D.; Slagle, Irene R.
  • The Journal of Physical Chemistry, Vol. 100, Issue 42
  • DOI: 10.1021/jp953218u

Experimental and Master Equation Study of the Kinetics of OH + C 2 H 2 :  Temperature Dependence of the Limiting High Pressure and Pressure Dependent Rate Coefficients
journal, May 2007

  • McKee, Kenneth W.; Blitz, Mark A.; Cleary, Patricia A.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 19
  • DOI: 10.1021/jp067594y

UV to Near-IR CO Emissions from O + C 2 H 2 and O + C 3 O 2 Flames at Low Pressure and High Temperature
journal, November 2000

  • Sheaffer, Patti M.; Zittel, Paul F.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 45
  • DOI: 10.1021/jp001247l

Pressure and Temperature Dependence of the Reaction of Vinyl Radical with Ethylene
journal, July 2007

  • Ismail, Huzeifa; Goldsmith, C. Franklin; Abel, Paul R.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 29
  • DOI: 10.1021/jp071041l

Addition of atomic hydrogen to acetylene. Chain reactions of the vinyl radical
journal, March 1984


Predictive theory for the combination kinetics of two alkyl radicals
journal, January 2006

  • Klippenstein, Stephen J.; Georgievskii, Yuri; Harding, Lawrence B.
  • Physical Chemistry Chemical Physics, Vol. 8, Issue 10
  • DOI: 10.1039/b515914h

Variational optimizations in the Rice–Ramsperger–Kassel–Marcus theory calculations for unimolecular dissociations with no reverse barrier
journal, January 1992

  • Klippenstein, Stephen J.
  • The Journal of Chemical Physics, Vol. 96, Issue 1
  • DOI: 10.1063/1.462472

Reaction CH 3 + CH 3 → C 2 H 6 Studied over the 292–714 K Temperature and 1–100 bar Pressure Ranges
journal, February 2015

  • Sangwan, Manuvesh; Yan, Chao; Chesnokov, Evgeni N.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 28
  • DOI: 10.1021/acs.jpca.5b01276

Rate constants for the reactions of CH3 radicals with C2H5, i-C3H7 and t-C4H9 radicals
journal, January 1987

  • Anastasi, Christopher; Arthur, Neville L.
  • Journal of the Chemical Society, Faraday Transactions 2, Vol. 83, Issue 1
  • DOI: 10.1039/f29878300277

High-Pressure Effects in the Recombination Reaction CH 3 + CH 3 → C 2 H 6
journal, January 1984

  • Hippler, H.; Luther, K.; Ravishankara, A. R.
  • Zeitschrift für Physikalische Chemie, Vol. 142, Issue 1
  • DOI: 10.1524/zpch.1984.142.1.001

Reaction rate determinations of vinyl radical reactions with vinyl, methyl, and hydrogen atoms
journal, April 1991

  • Fahr, A.; Laufer, A.; Klein, R.
  • The Journal of Physical Chemistry, Vol. 95, Issue 8
  • DOI: 10.1021/j100161a047

Experimental and Theoretical Investigations on the Methyl−Methyl Recombination Reaction
journal, December 2003

  • Wang, Baoshan; Hou, Hua; Yoder, Laurie M.
  • The Journal of Physical Chemistry A, Vol. 107, Issue 51
  • DOI: 10.1021/jp030657h

Study of the recombination reaction methyl + methyl .fwdarw. ethane. 1. Experiment
journal, May 1988

  • Slagle, Irene R.; Gutman, David; Davies, Joanne W.
  • The Journal of Physical Chemistry, Vol. 92, Issue 9
  • DOI: 10.1021/j100320a015

    Works referencing / citing this record:

    Towards a scientific data framework to support scientific model development: New requirements emerging from the combustion kinetics domain
    journal, November 2019

    • Scalia, Gabriele; Pelucchi, Matteo; Stagni, Alessandro
    • Data Science, Vol. 2, Issue 1-2
    • DOI: 10.3233/ds-190017

    Theoretical study of sensitive reactions in phenol decomposition
    journal, January 2020

    • Pratali Maffei, Luna; Pelucchi, Matteo; Faravelli, Tiziano
    • Reaction Chemistry & Engineering, Vol. 5, Issue 3
    • DOI: 10.1039/c9re00418a