skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion

Abstract

A technique to infer the areal density ρR of compressed deuterium (D) in cylindrical implosions from the ratio of secondary D–T (deuterium–tritium) neutrons to primary D–D neutrons is described and evaluated. For ρR to be proportional to the ratio of D–T to D–D yield, the increase in the D–T fusion cross section with collisional slowing of the tritium must be small, requiring where TkeV is the electron temperature in keV. The technique is applied to results from laser-driven magnetized liner inertial fusion (MagLIF) targets on OMEGA, where ρR is certainly less than 4 mg/cm2. OMEGA MagLIF targets do not achieve a sufficiently high, radially integrated, axial magnetic field BR to confine the tritium, as occurs in Z MagLIF targets, because they are ~10× smaller in radius. The inferred areal densities show that fuel convergence is reduced by preheating, by an applied axial magnetic field, and by increasing the initial fuel density, which are key features of the MagLIF scheme. The results are compared with 1-D and 2-D magnetohydrodynamic simulations for nominal laser and target parameters, which predict areal densities 2× to 3× higher than the measurements.

Authors:
 [1]; ORCiD logo [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1];  [1]
  1. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Publication Date:
Research Org.:
Laboratory for Laser Energetics, University of Rochester
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
Contributing Org.:
Laboratory for Laser Energetics, University of Rochester
OSTI Identifier:
1498079
Report Number(s):
2018-304, 1490, 2429
Journal ID: ISSN 1070-664X; 2018-304, 1470, 2429
Grant/Contract Number:  
NA0003856
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 26; Journal Issue: 2; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English

Citation Formats

Davies, J. R., Barnak, D. H., Betti, R., Campbell, E. M., Glebov, V. Yu., Hansen, E. C., Knauer, J. P., Peebles, J. L., and Sefkow, A. B. Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion. United States: N. p., 2019. Web. doi:10.1063/1.5082960.
Davies, J. R., Barnak, D. H., Betti, R., Campbell, E. M., Glebov, V. Yu., Hansen, E. C., Knauer, J. P., Peebles, J. L., & Sefkow, A. B. Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion. United States. doi:10.1063/1.5082960.
Davies, J. R., Barnak, D. H., Betti, R., Campbell, E. M., Glebov, V. Yu., Hansen, E. C., Knauer, J. P., Peebles, J. L., and Sefkow, A. B. Mon . "Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion". United States. doi:10.1063/1.5082960. https://www.osti.gov/servlets/purl/1498079.
@article{osti_1498079,
title = {Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion},
author = {Davies, J. R. and Barnak, D. H. and Betti, R. and Campbell, E. M. and Glebov, V. Yu. and Hansen, E. C. and Knauer, J. P. and Peebles, J. L. and Sefkow, A. B.},
abstractNote = {A technique to infer the areal density ρR of compressed deuterium (D) in cylindrical implosions from the ratio of secondary D–T (deuterium–tritium) neutrons to primary D–D neutrons is described and evaluated. For ρR to be proportional to the ratio of D–T to D–D yield, the increase in the D–T fusion cross section with collisional slowing of the tritium must be small, requiring where TkeV is the electron temperature in keV. The technique is applied to results from laser-driven magnetized liner inertial fusion (MagLIF) targets on OMEGA, where ρR is certainly less than 4 mg/cm2. OMEGA MagLIF targets do not achieve a sufficiently high, radially integrated, axial magnetic field BR to confine the tritium, as occurs in Z MagLIF targets, because they are ~10× smaller in radius. The inferred areal densities show that fuel convergence is reduced by preheating, by an applied axial magnetic field, and by increasing the initial fuel density, which are key features of the MagLIF scheme. The results are compared with 1-D and 2-D magnetohydrodynamic simulations for nominal laser and target parameters, which predict areal densities 2× to 3× higher than the measurements.},
doi = {10.1063/1.5082960},
journal = {Physics of Plasmas},
number = 2,
volume = 26,
place = {United States},
year = {2019},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Using nuclear data and Monte Carlo techniques to study areal density and mix in D2 implosions
journal, March 2005

  • Kurebayashi, S.; Frenje, J. A.; Séguin, F. H.
  • Physics of Plasmas, Vol. 12, Issue 3
  • DOI: 10.1063/1.1771656

Design of magnetized liner inertial fusion experiments using the Z facility
journal, July 2014

  • Sefkow, A. B.; Slutz, S. A.; Koning, J. M.
  • Physics of Plasmas, Vol. 21, Issue 7
  • DOI: 10.1063/1.4890298

Improved formulas for fusion cross-sections and thermal reactivities
journal, April 1992


Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010

  • Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3333505

Understanding Fuel Magnetization and Mix Using Secondary Nuclear Reactions in Magneto-Inertial Fusion
journal, October 2014


Laser entrance window transmission and reflection measurements for preheating in magnetized liner inertial fusion
journal, June 2018

  • Davies, J. R.; Bahr, R. E.; Barnak, D. H.
  • Physics of Plasmas, Vol. 25, Issue 6
  • DOI: 10.1063/1.5030107

Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion
journal, October 2014


The importance of electrothermal terms in Ohm's law for magnetized spherical implosions
journal, November 2015

  • Davies, J. R.; Betti, R.; Chang, P. -Y.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4935286

Neutron spectra from inertial confinement fusion targets for measurement of fuel areal density and charged particle stopping powers
journal, September 1987

  • Cable, M. D.; Hatchett, S. P.
  • Journal of Applied Physics, Vol. 62, Issue 6
  • DOI: 10.1063/1.339850

A new simple formula for fusion cross-sections of light nuclei
journal, November 2008


Measuring implosion velocities in experiments and simulations of laser-driven cylindrical implosions on the OMEGA laser
journal, April 2018

  • Hansen, E. C.; Barnak, D. H.; Betti, R.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 5
  • DOI: 10.1088/1361-6587/aab73f

Three‐dimensional simulations of Nova high growth factor capsule implosion experiments
journal, May 1996

  • Marinak, M. M.; Tipton, R. E.; Landen, O. L.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.872004

Improved formulas for fusion cross-sections and thermal reactivities
journal, December 1993


Laser-driven magnetized liner inertial fusion on OMEGA
journal, May 2017

  • Barnak, D. H.; Davies, J. R.; Betti, R.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982692

Experimental determination of fuel density‐radius product of inertial confinement fusion targets using secondary nuclear fusion reactions
journal, September 1986

  • Azechi, H.; Miyanaga, N.; Stapf, R. O.
  • Applied Physics Letters, Vol. 49, Issue 10
  • DOI: 10.1063/1.97093

Optimization of laser-driven cylindrical implosions on the OMEGA laser
journal, December 2018

  • Hansen, E. C.; Barnak, D. H.; Chang, P. -Y.
  • Physics of Plasmas, Vol. 25, Issue 12
  • DOI: 10.1063/1.5055776

Laser-driven magnetized liner inertial fusion
journal, June 2017

  • Davies, J. R.; Barnak, D. H.; Betti, R.
  • Physics of Plasmas, Vol. 24, Issue 6
  • DOI: 10.1063/1.4984779

Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740