DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-Fluorinated Electrolytes for Li–S Batteries

Abstract

Abstract Rechargeable Li–S batteries are regarded as one of the most promising next‐generation energy‐storage systems. However, the inevitable formation of Li dendrites and the shuttle effect of lithium polysulfides significantly weakens electrochemical performance, preventing its practical application. Herein, a new class of localized high‐concentration electrolyte (LHCE) enabled by adding inert fluoroalkyl ether of 1H,1H,5H‐octafluoropentyl‐1,1,2,2‐tetrafluoroethyl ether into highly‐concentrated electrolytes (HCE) lithium bis(fluorosulfonyl) imide/dimethoxyether (DME) system is reported to suppress Li dendrite formation and minimize the solubility of the high‐order polysulfides in electrolytes, thus reducing the amount of electrolyte in cells. Such a unique LHCE can achieve a high coulombic efficiency of Li plating/stripping up to 99.3% and completely suppressing the shuttling effect, thus maintaining a S cathode capacity of 775 mAh g −1 for 150 cycles with a lean electrolyte of 4.56 g A −1 h −1 . The LHCE reduces the solubility of lithium polysulfides, allowing the Li/S cell to achieve super performance in a lean electrolyte. This conception of using inert diluents in a highly concentrated electrolyte can accelerate commercialization of Li–S battery technology.

Authors:
 [1];  [2];  [3];  [3];  [3];  [3];  [3];  [3];  [3]; ORCiD logo [3]
  1. University of Maryland, College Park, MD (United States); Nanjing University of Aeronautics and Astronautics (China)
  2. Nanjing University of Aeronautics and Astronautics (China)
  3. University of Maryland, College Park, MD (United States)
Publication Date:
Research Org.:
Univ. of Maryland, College Park, MD (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1614093
Alternate Identifier(s):
OSTI ID: 1497239
Grant/Contract Number:  
EE0008200; EE0008202; DEEE0008202; DEEE0008200
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 9; Journal Issue: 16; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Zheng, Jing, Ji, Guangbin, Fan, Xiulin, Chen, Ji, Li, Qin, Wang, Haiyang, Yang, Yong, DeMella, Kerry C., Raghavan, Srinivasa R., and Wang, Chunsheng. High-Fluorinated Electrolytes for Li–S Batteries. United States: N. p., 2019. Web. doi:10.1002/aenm.201803774.
Zheng, Jing, Ji, Guangbin, Fan, Xiulin, Chen, Ji, Li, Qin, Wang, Haiyang, Yang, Yong, DeMella, Kerry C., Raghavan, Srinivasa R., & Wang, Chunsheng. High-Fluorinated Electrolytes for Li–S Batteries. United States. https://doi.org/10.1002/aenm.201803774
Zheng, Jing, Ji, Guangbin, Fan, Xiulin, Chen, Ji, Li, Qin, Wang, Haiyang, Yang, Yong, DeMella, Kerry C., Raghavan, Srinivasa R., and Wang, Chunsheng. Wed . "High-Fluorinated Electrolytes for Li–S Batteries". United States. https://doi.org/10.1002/aenm.201803774. https://www.osti.gov/servlets/purl/1614093.
@article{osti_1614093,
title = {High-Fluorinated Electrolytes for Li–S Batteries},
author = {Zheng, Jing and Ji, Guangbin and Fan, Xiulin and Chen, Ji and Li, Qin and Wang, Haiyang and Yang, Yong and DeMella, Kerry C. and Raghavan, Srinivasa R. and Wang, Chunsheng},
abstractNote = {Abstract Rechargeable Li–S batteries are regarded as one of the most promising next‐generation energy‐storage systems. However, the inevitable formation of Li dendrites and the shuttle effect of lithium polysulfides significantly weakens electrochemical performance, preventing its practical application. Herein, a new class of localized high‐concentration electrolyte (LHCE) enabled by adding inert fluoroalkyl ether of 1H,1H,5H‐octafluoropentyl‐1,1,2,2‐tetrafluoroethyl ether into highly‐concentrated electrolytes (HCE) lithium bis(fluorosulfonyl) imide/dimethoxyether (DME) system is reported to suppress Li dendrite formation and minimize the solubility of the high‐order polysulfides in electrolytes, thus reducing the amount of electrolyte in cells. Such a unique LHCE can achieve a high coulombic efficiency of Li plating/stripping up to 99.3% and completely suppressing the shuttling effect, thus maintaining a S cathode capacity of 775 mAh g −1 for 150 cycles with a lean electrolyte of 4.56 g A −1 h −1 . The LHCE reduces the solubility of lithium polysulfides, allowing the Li/S cell to achieve super performance in a lean electrolyte. This conception of using inert diluents in a highly concentrated electrolyte can accelerate commercialization of Li–S battery technology.},
doi = {10.1002/aenm.201803774},
journal = {Advanced Energy Materials},
number = 16,
volume = 9,
place = {United States},
year = {Wed Feb 27 00:00:00 EST 2019},
month = {Wed Feb 27 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 192 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Physicochemical parameters for various electrolytes: a) Li+ transference number and ionic conductivity; b) electrolyte viscosities as functions of shear-rate (top) and the corresponding average viscosities (bottom). c, d) Property of lithium polysulfide dissolution: c) digital photos for saturate Li2S8 in different solutions after 2 weeks standing, and d)more » the corresponding UV-Vis absorption spectra.« less

Save / Share:

Works referenced in this record:

A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium-Sulfur Batteries with Long Cycle Life
journal, January 2012

  • Xiao, Lifen; Cao, Yuliang; Xiao, Jie
  • Advanced Materials, Vol. 24, Issue 9, p. 1176-1181
  • DOI: 10.1002/adma.201103392

High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes
journal, March 2018

  • Chen, Shuru; Zheng, Jianming; Mei, Donghai
  • Advanced Materials, Vol. 30, Issue 21
  • DOI: 10.1002/adma.201706102

Dilution of Highly Concentrated LiBF 4 /Propylene Carbonate Electrolyte Solution with Fluoroalkyl Ethers for 5-V LiNi 0.5 Mn 1.5 O 4 Positive Electrodes
journal, January 2017

  • Doi, Takayuki; Shimizu, Yusuke; Hashinokuchi, Michihiro
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0611701jes

Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode
journal, January 2015

  • Bieker, Georg; Winter, Martin; Bieker, Peter
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 14
  • DOI: 10.1039/C4CP05865H

Encapsulated Monoclinic Sulfur for Stable Cycling of Li-S Rechargeable Batteries
journal, September 2013


Review—Superconcentrated Electrolytes for Lithium Batteries
journal, January 2015

  • Yamada, Yuki; Yamada, Atsuo
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0041514jes

Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors
journal, September 2012

  • Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A.
  • Angewandte Chemie International Edition, Vol. 51, Issue 40
  • DOI: 10.1002/anie.201201429

Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes
journal, October 2017


Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification
journal, April 2012

  • Barchasz, Céline; Molton, Florian; Duboc, Carole
  • Analytical Chemistry, Vol. 84, Issue 9
  • DOI: 10.1021/ac2032244

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells
journal, November 2011

  • Ji, Liwen; Rao, Mumin; Zheng, Haimei
  • Journal of the American Chemical Society, Vol. 133, Issue 46, p. 18522-18525
  • DOI: 10.1021/ja206955k

Recent Advances in Electrolytes for Lithium-Sulfur Batteries
journal, April 2015

  • Zhang, Shiguo; Ueno, Kazuhide; Dokko, Kaoru
  • Advanced Energy Materials, Vol. 5, Issue 16
  • DOI: 10.1002/aenm.201500117

Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy
journal, September 2013

  • Cuisinier, Marine; Cabelguen, Pierre-Etienne; Evers, Scott
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 19
  • DOI: 10.1021/jz401763d

Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications
journal, March 2017

  • Zheng, Jianming; Lochala, Joshua A.; Kwok, Alexander
  • Advanced Science, Vol. 4, Issue 8
  • DOI: 10.1002/advs.201700032

Prescribing Functional Additives for Treating the Poor Performances of High-Voltage (5 V-class) LiNi 0.5 Mn 1.5 O 4 /MCMB Li-Ion Batteries
journal, December 2017

  • Xu, Gaojie; Pang, Chunguang; Chen, Bingbing
  • Advanced Energy Materials, Vol. 8, Issue 9
  • DOI: 10.1002/aenm.201701398

Carbon–sulfur composites for Li–S batteries: status and prospects
journal, January 2013

  • Wang, Da-Wei; Zeng, Qingcong; Zhou, Guangmin
  • Journal of Materials Chemistry A, Vol. 1, Issue 33
  • DOI: 10.1039/c3ta11045a

Effect of the Hydrofluoroether Cosolvent Structure in Acetonitrile-Based Solvate Electrolytes on the Li + Solvation Structure and Li–S Battery Performance
journal, November 2017

  • Shin, Minjeong; Wu, Heng-Liang; Narayanan, Badri
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 45
  • DOI: 10.1021/acsami.7b11566

Solvent Effect of Room Temperature Ionic Liquids on Electrochemical Reactions in Lithium–Sulfur Batteries
journal, February 2013

  • Park, Jun-Woo; Yamauchi, Kento; Takashima, Eriko
  • The Journal of Physical Chemistry C, Vol. 117, Issue 9
  • DOI: 10.1021/jp400153m

A Highly Reversible Lithium Metal Anode
journal, January 2014

  • Park, Min Sik; Ma, Sang Bok; Lee, Dong Joon
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep03815

Solvent Activity in Electrolyte Solutions Controls Electrochemical Reactions in Li-Ion and Li-Sulfur Batteries
journal, February 2015

  • Moon, Heejoon; Mandai, Toshihiko; Tatara, Ryoichi
  • The Journal of Physical Chemistry C, Vol. 119, Issue 8
  • DOI: 10.1021/jp5128578

Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene–sulfur composites for high-performance lithium-sulfur batteries
journal, January 2013

  • Lin, Tianquan; Tang, Yufeng; Wang, Yaoming
  • Energy & Environmental Science, Vol. 6, Issue 4
  • DOI: 10.1039/c3ee24324a

Anodes for Rechargeable Lithium-Sulfur Batteries
journal, April 2015


Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries
journal, January 2014

  • Cuisinier, M.; Cabelguen, P. -E.; Adams, B. D.
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE00372A

Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions
journal, June 2013


Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

All solid-state polymer electrolytes for high-performance lithium ion batteries
journal, October 2016


Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li-S batteries
journal, August 2018


Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration Electrolytes
journal, January 2018


Solvate Ionic Liquid Electrolyte for Li–S Batteries
journal, January 2013

  • Dokko, Kaoru; Tachikawa, Naoki; Yamauchi, Kento
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.111308jes

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

A stable graphite negative electrode for the lithium–sulfur battery
journal, January 2015

  • Jeschull, Fabian; Brandell, Daniel; Edström, Kristina
  • Chemical Communications, Vol. 51, Issue 96
  • DOI: 10.1039/C5CC06666B

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.