skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantifying uncertainty from aerosol and atmospheric parameters and their impact on climate sensitivity

Abstract

Abstract. Climate sensitivity in Earth system models (ESMs) is an emergentproperty that is affected by structural (missing or inaccurate model physics)and parametric (variations in model parameters) uncertainty. This workprovides the first quantitative assessment of the role of compensationbetween uncertainties in aerosol forcing and atmospheric parameters, andtheir impact on the climate sensitivity of the Community Atmosphere Model,Version 4 (CAM4). Running the model with prescribed ocean and ice conditions,we perturb four parameters related to sulfate and black carbon aerosolradiative forcing and distribution, as well as five atmospheric parametersrelated to clouds, convection, and radiative flux. In this experimental setupwhere aerosols do not affect the properties of clouds, the atmosphericparameters explain the majority of variance in climate sensitivity, with twoparameters being the most important: one controlling low cloud amount, andone controlling the timescale for deep convection. Although the aerosolparameters strongly affect aerosol optical depth, their impacts on climatesensitivity are substantially weaker than the impacts of the atmosphericparameters, but this result may depend on whether aerosol–cloud interactionsare simulated. Based on comparisons to inter-model spread of other ESMs, weconclude that structural uncertainties in this configuration of CAM4 likelycontribute 3 times more to uncertainty in climate sensitivity thanparametric uncertainties. We provide several parameter sets that couldprovide plausible (measuredmore » by a skill score) configurations of CAM4, butwith different sulfate aerosol radiative forcing, black carbon radiativeforcing, and climate sensitivity.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of Waterloo, ON (Canada)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1496617
Report Number(s):
PNNL-SA-137490
Journal ID: ISSN 1680-7324
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 18; Journal Issue: 23; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Fletcher, Christopher G., Kravitz, Ben, and Badawy, Bakr. Quantifying uncertainty from aerosol and atmospheric parameters and their impact on climate sensitivity. United States: N. p., 2018. Web. doi:10.5194/acp-18-17529-2018.
Fletcher, Christopher G., Kravitz, Ben, & Badawy, Bakr. Quantifying uncertainty from aerosol and atmospheric parameters and their impact on climate sensitivity. United States. doi:10.5194/acp-18-17529-2018.
Fletcher, Christopher G., Kravitz, Ben, and Badawy, Bakr. Tue . "Quantifying uncertainty from aerosol and atmospheric parameters and their impact on climate sensitivity". United States. doi:10.5194/acp-18-17529-2018. https://www.osti.gov/servlets/purl/1496617.
@article{osti_1496617,
title = {Quantifying uncertainty from aerosol and atmospheric parameters and their impact on climate sensitivity},
author = {Fletcher, Christopher G. and Kravitz, Ben and Badawy, Bakr},
abstractNote = {Abstract. Climate sensitivity in Earth system models (ESMs) is an emergentproperty that is affected by structural (missing or inaccurate model physics)and parametric (variations in model parameters) uncertainty. This workprovides the first quantitative assessment of the role of compensationbetween uncertainties in aerosol forcing and atmospheric parameters, andtheir impact on the climate sensitivity of the Community Atmosphere Model,Version 4 (CAM4). Running the model with prescribed ocean and ice conditions,we perturb four parameters related to sulfate and black carbon aerosolradiative forcing and distribution, as well as five atmospheric parametersrelated to clouds, convection, and radiative flux. In this experimental setupwhere aerosols do not affect the properties of clouds, the atmosphericparameters explain the majority of variance in climate sensitivity, with twoparameters being the most important: one controlling low cloud amount, andone controlling the timescale for deep convection. Although the aerosolparameters strongly affect aerosol optical depth, their impacts on climatesensitivity are substantially weaker than the impacts of the atmosphericparameters, but this result may depend on whether aerosol–cloud interactionsare simulated. Based on comparisons to inter-model spread of other ESMs, weconclude that structural uncertainties in this configuration of CAM4 likelycontribute 3 times more to uncertainty in climate sensitivity thanparametric uncertainties. We provide several parameter sets that couldprovide plausible (measured by a skill score) configurations of CAM4, butwith different sulfate aerosol radiative forcing, black carbon radiativeforcing, and climate sensitivity.},
doi = {10.5194/acp-18-17529-2018},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 23,
volume = 18,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Table 1 Table 1: List of parameters that are perturbed in this study, including for each parameter a description, the range of perturbed values, and the default value in CAM4 (where applicable).

Save / Share:

Works referenced in this record:

Interpretation of Cloud-Climate Feedback as Produced by 14 Atmospheric General Circulation Models
journal, August 1989


Sensitivity of the Climate Response to the Altitude of Black Carbon in the Northern Subtropics in an Aquaplanet GCM
journal, August 2015


The Community Climate System Model Version 4
journal, October 2011

  • Gent, Peter R.; Danabasoglu, Gokhan; Donner, Leo J.
  • Journal of Climate, Vol. 24, Issue 19
  • DOI: 10.1175/2011JCLI4083.1

Twentieth century climate model response and climate sensitivity
journal, January 2007


Variability in modeled cloud feedback tied to differences in the climatological spatial pattern of clouds
journal, April 2017

  • Siler, Nicholas; Po-Chedley, Stephen; Bretherton, Christopher S.
  • Climate Dynamics, Vol. 50, Issue 3-4
  • DOI: 10.1007/s00382-017-3673-2

Rethinking the Lower Bound on Aerosol Radiative Forcing
journal, June 2015


Large contribution of natural aerosols to uncertainty in indirect forcing
journal, November 2013

  • Carslaw, K. S.; Lee, L. A.; Reddington, C. L.
  • Nature, Vol. 503, Issue 7474
  • DOI: 10.1038/nature12674

The Formulation and Atmospheric Simulation of the Community Atmosphere Model Version 3 (CAM3)
journal, June 2006

  • Collins, William D.; Rasch, Philip J.; Boville, Byron A.
  • Journal of Climate, Vol. 19, Issue 11
  • DOI: 10.1175/JCLI3760.1

Cloud tuning in a coupled climate model: Impact on 20th century warming: CLOUD TUNING AND 20TH CENTURY WARMING
journal, March 2013

  • Golaz, Jean-Christophe; Horowitz, Larry W.; Levy, Hiram
  • Geophysical Research Letters, Vol. 40, Issue 10
  • DOI: 10.1002/grl.50232

Efficient screening of climate model sensitivity to a large number of perturbed input parameters: PERTURBED INPUT-PARAMETER SENSITIVITY
journal, July 2013

  • Covey, Curt; Lucas, Donald D.; Tannahill, John
  • Journal of Advances in Modeling Earth Systems, Vol. 5, Issue 3
  • DOI: 10.1002/jame.20040

The Low-Resolution CCSM4
journal, June 2012

  • Shields, Christine A.; Bailey, David A.; Danabasoglu, Gokhan
  • Journal of Climate, Vol. 25, Issue 12
  • DOI: 10.1175/JCLI-D-11-00260.1

Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model
journal, July 2012

  • Hourdin, Frédéric; Foujols, Marie-Alice; Codron, Francis
  • Climate Dynamics, Vol. 40, Issue 9-10
  • DOI: 10.1007/s00382-012-1411-3

Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models: FORCING IN CMIP5 CLIMATE MODELS
journal, February 2013

  • Forster, Piers M.; Andrews, Timothy; Good, Peter
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 3
  • DOI: 10.1002/jgrd.50174

Bounding the role of black carbon in the climate system: A scientific assessment: BLACK CARBON IN THE CLIMATE SYSTEM
journal, June 2013

  • Bond, T. C.; Doherty, S. J.; Fahey, D. W.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 11
  • DOI: 10.1002/jgrd.50171

DiceKriging , DiceOptim : Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization
journal, January 2012

  • Roustant, Olivier; Ginsbourger, David; Deville, Yves
  • Journal of Statistical Software, Vol. 51, Issue 1
  • DOI: 10.18637/jss.v051.i01

Dependence of climate forcing and response on the altitude of black carbon aerosols
journal, April 2011


The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 2. Model Description, Sensitivity Studies, and Tuning Strategies
journal, March 2018

  • Zhao, M.; Golaz, J. -C.; Held, I. M.
  • Journal of Advances in Modeling Earth Systems, Vol. 10, Issue 3
  • DOI: 10.1002/2017MS001209

Uncertainty analysis for estimates of the first indirect aerosol effect
journal, January 2005


Spread in model climate sensitivity traced to atmospheric convective mixing
journal, January 2014

  • Sherwood, Steven C.; Bony, Sandrine; Dufresne, Jean-Louis
  • Nature, Vol. 505, Issue 7481
  • DOI: 10.1038/nature12829

Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models: CLIMATE SENSITIVITY IN CMIP5 MODELS
journal, May 2012

  • Andrews, Timothy; Gregory, Jonathan M.; Webb, Mark J.
  • Geophysical Research Letters, Vol. 39, Issue 9
  • DOI: 10.1029/2012GL051607

Using aquaplanets to understand the robust responses of comprehensive climate models to forcing
journal, May 2014


A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code
journal, May 1979

  • McKay, M. D.; Beckman, R. J.; Conover, W. J.
  • Technometrics, Vol. 21, Issue 2
  • DOI: 10.2307/1268522

Selecting global climate models for regional climate change studies
journal, May 2009

  • Pierce, D. W.; Barnett, T. P.; Santer, B. D.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 21
  • DOI: 10.1073/pnas.0900094106

Mapping the uncertainty in global CCN using emulation
journal, January 2012

  • Lee, L. A.; Carslaw, K. S.; Pringle, K. J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 20
  • DOI: 10.5194/acp-12-9739-2012

Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity
journal, December 2010

  • Watanabe, Masahiro; Suzuki, Tatsuo; O’ishi, Ryouta
  • Journal of Climate, Vol. 23, Issue 23
  • DOI: 10.1175/2010JCLI3679.1

Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application
journal, January 2010

  • Lamarque, J. -F.; Bond, T. C.; Eyring, V.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 15
  • DOI: 10.5194/acp-10-7017-2010

The impact of structural error on parameter constraint in a climate model
journal, January 2016

  • McNeall, Doug; Williams, Jonny; Booth, Ben
  • Earth System Dynamics, Vol. 7, Issue 4
  • DOI: 10.5194/esd-7-917-2016

The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability
journal, August 2015

  • Kay, J. E.; Deser, C.; Phillips, A.
  • Bulletin of the American Meteorological Society, Vol. 96, Issue 8
  • DOI: 10.1175/BAMS-D-13-00255.1

Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters
journal, January 2011

  • Lee, L. A.; Carslaw, K. S.; Pringle, K. J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 23
  • DOI: 10.5194/acp-11-12253-2011

Climate response to externally mixed black carbon as a function of altitude: BC climate response vs altitude
journal, April 2015

  • Samset, B. H.; Myhre, G.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 7
  • DOI: 10.1002/2014JD022849

Aerosol and physical atmosphere model parameters are both important sources of uncertainty in aerosol ERF
journal, January 2018

  • Regayre, Leighton A.; Johnson, Jill S.; Yoshioka, Masaru
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 13
  • DOI: 10.5194/acp-18-9975-2018

A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output
journal, February 1999


The Art and Science of Climate Model Tuning
journal, March 2017

  • Hourdin, Frédéric; Mauritsen, Thorsten; Gettelman, Andrew
  • Bulletin of the American Meteorological Society, Vol. 98, Issue 3
  • DOI: 10.1175/BAMS-D-15-00135.1

Clouds, circulation and climate sensitivity
journal, March 2015

  • Bony, Sandrine; Stevens, Bjorn; Frierson, Dargan M. W.
  • Nature Geoscience, Vol. 8, Issue 4
  • DOI: 10.1038/ngeo2398

Constraints on Model Response to Greenhouse Gas Forcing and the Role of Subgrid-Scale Processes
journal, June 2008

  • Sanderson, Benjamin M.; Knutti, R.; Aina, T.
  • Journal of Climate, Vol. 21, Issue 11
  • DOI: 10.1175/2008JCLI1869.1

Global aerosol climatology from the MODIS satellite sensors
journal, January 2008

  • Remer, Lorraine A.; Kleidman, Richard G.; Levy, Robert C.
  • Journal of Geophysical Research, Vol. 113, Issue D14
  • DOI: 10.1029/2007JD009661

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.