DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cations controlled growth of β-MnO2 crystals with tunable facets for electrochemical energy storage

Abstract

Engineering crystal facets to enhance their functionalities often require complex processing routes to suppress the growth of surfaces with the lowest thermodynamic energies. Herein, we report a unique method to control the morphologies of β-MnO2 crystals with different occupancy of {100}/{111} facets through the effect of K+ cations. Combining aberration-corrected scanning transmission electron microscopy (STEM), ultramicrotomy, and dynamic functional theory (DFT) simulation, we clarified that the β-MnO2 crystals were formed through a direct solid-state phase transition process. Increasing the concentration of K+ cations in the precursor gradually changed the morphology of β-MnO2 from bipyramid prism ({100}+{111} facets) to an octahedron structure ({111} facets). The K+ cations controlled the morphology of β-MnO2 by affecting the formation of α-K0.5Mn4O8 intermediate phase and the subsequent phase transition. Utilizing the β-MnO2 crystals as the cathode for Li-ion batteries showed that highly exposed {111} facets offered β-MnO2 crystal better rate performance, with ~70% capacity retention when the charge-discharge rate increased from 20 mA/g to 200 mA/g. Furthermore, our work revealed a new mechanism to tune the morphology of this earth-abundant metal oxide crystal, which could be used to adjust its electrochemical performance for different applications, such as supercapacitors and catalysts for metal-air batteries and fuelmore » cells.« less

Authors:
ORCiD logo [1];  [1];  [2];  [3];  [4];  [2];  [2];  [2]; ORCiD logo [2];  [1];  [1]; ORCiD logo [5]; ORCiD logo [6];  [4]
  1. Michigan Technological Univ., Houghton, MI (United States)
  2. Univ. of Illinois at Chicago, Chicago, IL (United States)
  3. Univ. of Illinois at Chicago, Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
  4. Michigan Technological Univ., Houghton, MI (United States); Univ. of Illinois at Chicago, Chicago, IL (United States)
  5. Argonne National Lab. (ANL), Argonne, IL (United States); Imam Abdulrahman Bin Faisal Univ., Dammam (Saudi Arabia)
  6. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE
OSTI Identifier:
1461337
Alternate Identifier(s):
OSTI ID: 1496462
Grant/Contract Number:  
AC02-06CH11357; 4J-30361; JEMARM200CF; JEM-ARM200CF
Resource Type:
Accepted Manuscript
Journal Name:
Nano Energy
Additional Journal Information:
Journal Volume: 48; Journal Issue: C; Journal ID: ISSN 2211-2855
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; facet engineering; growth mechanism; hydrothermal synthesis; lithium-ion batteries; manganese dioxide

Citation Formats

Yao, Wentao, Odegard, Gregory M., Huang, Zhennan, Yuan, Yifei, Asayesh-Ardakani, Hasti, Sharifi-Asl, Soroosh, Cheng, Meng, Song, Boao, Deivanayagam, Ramasubramonian, Long, Fei, Friedrich, Craig R., Amine, Khalil, Lu, Jun, and Shahbazian-Yassar, Reza. Cations controlled growth of β-MnO2 crystals with tunable facets for electrochemical energy storage. United States: N. p., 2018. Web. doi:10.1016/j.nanoen.2018.03.057.
Yao, Wentao, Odegard, Gregory M., Huang, Zhennan, Yuan, Yifei, Asayesh-Ardakani, Hasti, Sharifi-Asl, Soroosh, Cheng, Meng, Song, Boao, Deivanayagam, Ramasubramonian, Long, Fei, Friedrich, Craig R., Amine, Khalil, Lu, Jun, & Shahbazian-Yassar, Reza. Cations controlled growth of β-MnO2 crystals with tunable facets for electrochemical energy storage. United States. https://doi.org/10.1016/j.nanoen.2018.03.057
Yao, Wentao, Odegard, Gregory M., Huang, Zhennan, Yuan, Yifei, Asayesh-Ardakani, Hasti, Sharifi-Asl, Soroosh, Cheng, Meng, Song, Boao, Deivanayagam, Ramasubramonian, Long, Fei, Friedrich, Craig R., Amine, Khalil, Lu, Jun, and Shahbazian-Yassar, Reza. Thu . "Cations controlled growth of β-MnO2 crystals with tunable facets for electrochemical energy storage". United States. https://doi.org/10.1016/j.nanoen.2018.03.057. https://www.osti.gov/servlets/purl/1461337.
@article{osti_1461337,
title = {Cations controlled growth of β-MnO2 crystals with tunable facets for electrochemical energy storage},
author = {Yao, Wentao and Odegard, Gregory M. and Huang, Zhennan and Yuan, Yifei and Asayesh-Ardakani, Hasti and Sharifi-Asl, Soroosh and Cheng, Meng and Song, Boao and Deivanayagam, Ramasubramonian and Long, Fei and Friedrich, Craig R. and Amine, Khalil and Lu, Jun and Shahbazian-Yassar, Reza},
abstractNote = {Engineering crystal facets to enhance their functionalities often require complex processing routes to suppress the growth of surfaces with the lowest thermodynamic energies. Herein, we report a unique method to control the morphologies of β-MnO2 crystals with different occupancy of {100}/{111} facets through the effect of K+ cations. Combining aberration-corrected scanning transmission electron microscopy (STEM), ultramicrotomy, and dynamic functional theory (DFT) simulation, we clarified that the β-MnO2 crystals were formed through a direct solid-state phase transition process. Increasing the concentration of K+ cations in the precursor gradually changed the morphology of β-MnO2 from bipyramid prism ({100}+{111} facets) to an octahedron structure ({111} facets). The K+ cations controlled the morphology of β-MnO2 by affecting the formation of α-K0.5Mn4O8 intermediate phase and the subsequent phase transition. Utilizing the β-MnO2 crystals as the cathode for Li-ion batteries showed that highly exposed {111} facets offered β-MnO2 crystal better rate performance, with ~70% capacity retention when the charge-discharge rate increased from 20 mA/g to 200 mA/g. Furthermore, our work revealed a new mechanism to tune the morphology of this earth-abundant metal oxide crystal, which could be used to adjust its electrochemical performance for different applications, such as supercapacitors and catalysts for metal-air batteries and fuel cells.},
doi = {10.1016/j.nanoen.2018.03.057},
journal = {Nano Energy},
number = C,
volume = 48,
place = {United States},
year = {Thu Mar 22 00:00:00 EDT 2018},
month = {Thu Mar 22 00:00:00 EDT 2018}
}

Journal Article:

Citation Metrics:
Cited by: 36 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanostructured Mn-based oxides for electrochemical energy storage and conversion
journal, January 2015

  • Zhang, Kai; Han, Xiaopeng; Hu, Zhe
  • Chemical Society Reviews, Vol. 44, Issue 3
  • DOI: 10.1039/C4CS00218K

Combination of Lightweight Elements and Nanostructured Materials for Batteries
journal, June 2009

  • Chen, Jun; Cheng, Fangyi
  • Accounts of Chemical Research, Vol. 42, Issue 6
  • DOI: 10.1021/ar800229g

Facile Controlled Synthesis of MnO 2 Nanostructures of Novel Shapes and Their Application in Batteries
journal, March 2006

  • Cheng, Fangyi; Zhao, Jianzhi; Song, Wene
  • Inorganic Chemistry, Vol. 45, Issue 5
  • DOI: 10.1021/ic051715b

Microstructural Effects on Charge-Storage Properties in MnO 2 -Based Electrochemical Supercapacitors
journal, April 2009

  • Ghodbane, Ouassim; Pascal, Jean-Louis; Favier, Frédéric
  • ACS Applied Materials & Interfaces, Vol. 1, Issue 5
  • DOI: 10.1021/am900094e

Effect of Crystallographic Structure of MnO 2 on Its Electrochemical Capacitance Properties
journal, February 2008

  • Devaraj, S.; Munichandraiah, N.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 11
  • DOI: 10.1021/jp7108785

Morphological and Crystalline Evolution of Nanostructured MnO 2 and Its Application in Lithium–Air Batteries
journal, August 2012

  • Truong, Tu T.; Liu, Yuzi; Ren, Yang
  • ACS Nano, Vol. 6, Issue 9
  • DOI: 10.1021/nn302654p

Shape-Controlled Synthesis of MnO 2 Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction
journal, December 2009

  • Xiao, Wei; Wang, Deli; Lou, Xiong Wen
  • The Journal of Physical Chemistry C, Vol. 114, Issue 3
  • DOI: 10.1021/jp909386d

Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties
journal, September 2009


Performance modulation of α-MnO2 nanowires by crystal facet engineering
journal, March 2015

  • Li, Wenxian; Cui, Xiangyuan; Zeng, Rong
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08987

Evidence that Crystal Facet Orientation Dictates Oxygen Evolution Intermediates on Rutile Manganese Oxide
journal, February 2018

  • Kakizaki, Hirotaka; Ooka, Hideshi; Hayashi, Toru
  • Advanced Functional Materials, Vol. 28, Issue 24
  • DOI: 10.1002/adfm.201706319

Thermodynamics of Phase Selection in MnO 2 Framework Structures through Alkali Intercalation and Hydration
journal, February 2017

  • Kitchaev, Daniil A.; Dacek, Stephen T.; Sun, Wenhao
  • Journal of the American Chemical Society, Vol. 139, Issue 7
  • DOI: 10.1021/jacs.6b11301

Mesoporous Crystalline β-MnO2—a Reversible Positive Electrode for Rechargeable Lithium Batteries
journal, March 2007


Single-crystal β-MnO2 hollow bipyramids: synthesis and application in lithium ion batteries
journal, January 2013

  • Zhan, Dan; Zhang, Qinggang; Hu, Xiaohong
  • RSC Advances, Vol. 3, Issue 15
  • DOI: 10.1039/c3ra23258a

In situ synthesis of ultrafine β-MnO2/polypyrrole nanorod composites for high-performance supercapacitors
journal, January 2011

  • Zang, Jianfeng; Li, Xiaodong
  • Journal of Materials Chemistry, Vol. 21, Issue 29
  • DOI: 10.1039/c1jm11491c

Selected-Control Hydrothermal Synthesis of α- and β-MnO 2 Single Crystal Nanowires
journal, March 2002

  • Wang, Xun; Li, Yadong
  • Journal of the American Chemical Society, Vol. 124, Issue 12
  • DOI: 10.1021/ja0177105

Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods
journal, December 2002


Hydrothermal Synthesis and Pseudocapacitance Properties of MnO 2 Nanostructures
journal, November 2005

  • Subramanian, V.; Zhu, Hongwei; Vajtai, Robert
  • The Journal of Physical Chemistry B, Vol. 109, Issue 43
  • DOI: 10.1021/jp0543330

Morphology Control of Cryptomelane Type MnO 2 Nanowires by Soft Chemistry. Growth Mechanisms in Aqueous Medium
journal, October 2007

  • Portehault, David; Cassaignon, Sophie; Baudrin, Emmanuel
  • Chemistry of Materials, Vol. 19, Issue 22
  • DOI: 10.1021/cm071654a

Controllable synthesis of α- and β - MnO 2 : cationic effect on hydrothermal crystallization
journal, April 2008


Synthesis of Single-Crystal Tetragonal α-MnO 2 Nanotubes
journal, August 2008

  • Luo, J.; Zhu, H. T.; Fan, H. M.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 33
  • DOI: 10.1021/jp8052967

Fluoride anions-assisted hydrothermal preparation and growth process of β-MnO2 with bipyramid prism morphology
journal, January 2013

  • Wang, Jianfang; Deng, Lingjuan; Zhu, Gang
  • CrystEngComm, Vol. 15, Issue 34
  • DOI: 10.1039/c3ce40608c

Asynchronous Crystal Cell Expansion during Lithiation of K + -Stabilized α-MnO 2
journal, April 2015

  • Yuan, Yifei; Nie, Anmin; Odegard, Gregory M.
  • Nano Letters, Vol. 15, Issue 5
  • DOI: 10.1021/nl5048913

Controllable hydrothermal synthesis of manganese dioxide nanostructures: shape evolution, growth mechanism and electrochemical properties
journal, January 2012

  • Duan, Xiaochuan; Yang, Jiaqin; Gao, Haiyan
  • CrystEngComm, Vol. 14, Issue 12
  • DOI: 10.1039/c2ce06587h

Synthesis and characterization of α-MnO2 nanowires: Self-assembly and phase transformation to β-MnO2 microcrystals
journal, February 2008


Atomistic Insights into the Oriented Attachment of Tunnel-Based Oxide Nanostructures
journal, December 2015


Controllable Synthesis of α-MnO2 Nanostructures and Phase Transformation to β-MnO2 Microcrystals by Hydrothermal Crystallization
journal, February 2010

  • Zhang, Xiong; Yu, Peng; Wang, Dongliang
  • Journal of Nanoscience and Nanotechnology, Vol. 10, Issue 2
  • DOI: 10.1166/jnn.2010.1893

The influence of large cations on the electrochemical properties of tunnel-structured metal oxides
journal, November 2016

  • Yuan, Yifei; Zhan, Chun; He, Kun
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13374

A redox-hydrothermal route to β-MnO2 hollow octahedra
journal, July 2009


One-pot hydrothermal synthesis of β-MnO2 crystals and their magnetic properties
journal, November 2013

  • Yu, Peng; Zhang, Xiong; Sun, Xianzhong
  • Journal of Physics and Chemistry of Solids, Vol. 74, Issue 11
  • DOI: 10.1016/j.jpcs.2013.06.006

Formation Mechanisms of Nanocrystalline MnO 2 Polymorphs under Hydrothermal Conditions
journal, January 2018

  • Birgisson, Steinar; Saha, Dipankar; Iversen, Bo B.
  • Crystal Growth & Design, Vol. 18, Issue 2
  • DOI: 10.1021/acs.cgd.7b01304

Oxidation states of Mn and Fe in various compound oxide systems
journal, July 2006


Crystal Facet Dependence of Water Oxidation on BiVO4 Sheets under Visible Light Irradiation
journal, November 2010

  • Wang, Donge; Jiang, Hongfu; Zong, Xu
  • Chemistry - A European Journal, Vol. 17, Issue 4
  • DOI: 10.1002/chem.201001636

Energy-driven surface evolution in beta-MnO2 structures
journal, June 2017


Rutile (β-)MnO 2 Surfaces and Vacancy Formation for High Electrochemical and Catalytic Performance
journal, January 2014

  • Tompsett, David A.; Parker, Stephen C.; Islam, M. Saiful
  • Journal of the American Chemical Society, Vol. 136, Issue 4
  • DOI: 10.1021/ja4092962

Atomistic simulation of the surface structure of electrolytic manganese dioxide
journal, November 2009


Nanostructuring of β-MnO 2 : The Important Role of Surface to Bulk Ion Migration
journal, February 2013

  • Tompsett, David A.; Parker, Steve C.; Bruce, Peter G.
  • Chemistry of Materials, Vol. 25, Issue 4
  • DOI: 10.1021/cm303295f

First-Principles Calculations of Clean, Oxidized, and Reduced β-MnO 2 Surfaces
journal, August 2011

  • Oxford, Gloria A. E.; Chaka, Anne M.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 34
  • DOI: 10.1021/jp2037137

Capillary condensation of adsorbates in porous materials
journal, November 2011

  • Horikawa, Toshihide; Do, D. D.; Nicholson, D.
  • Advances in Colloid and Interface Science, Vol. 169, Issue 1
  • DOI: 10.1016/j.cis.2011.08.003

Controllable Synthesis of Hollow Bipyramid β-MnO 2 and Its High Electrochemical Performance for Lithium Storage
journal, June 2012

  • Chen, Wei-Min; Qie, Long; Shao, Qing-Guo
  • ACS Applied Materials & Interfaces, Vol. 4, Issue 6
  • DOI: 10.1021/am300410z

Preparation of β-MnO 2 nanocrystal/acetylene black composites for lithium batteries
journal, January 2003

  • Tang, Weiping; Yang, Xiaojing; Liu, Zhonghui
  • J. Mater. Chem., Vol. 13, Issue 12
  • DOI: 10.1039/B306780G

Lithium insertion into βMnO2 and the rutile-spinel transformation
journal, January 1984


Highly crystalline macroporous β-MnO2: Hydrothermal synthesis and application in lithium battery
journal, July 2010


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Electrochemistry of Hollandite α-MnO 2 : Li-Ion and Na-Ion Insertion and Li 2 O Incorporation
journal, June 2013

  • Tompsett, David A.; Islam, M. Saiful
  • Chemistry of Materials, Vol. 25, Issue 12
  • DOI: 10.1021/cm400864n

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Works referencing / citing this record:

Morphological evolution process of δ-MnO 2 from 2-D to 1-D without phase transition
journal, January 2019

  • Fu, Xin; Huo, Wangchen; Liu, Xiaoying
  • CrystEngComm, Vol. 21, Issue 31
  • DOI: 10.1039/c9ce00715f

K + intercalated V 2 O 5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries
journal, January 2019

  • Islam, Saiful; Alfaruqi, Muhammad Hilmy; Putro, Dimas Y.
  • Journal of Materials Chemistry A, Vol. 7, Issue 35
  • DOI: 10.1039/c9ta05767f

Carbon-coated β-MnO 2 for cathode of lithium-ion battery
journal, January 2020

  • Tai, Zige; Shi, Ming; Zhu, Wei
  • Sustainable Energy & Fuels, Vol. 4, Issue 4
  • DOI: 10.1039/c9se01048c

Manganese-Oxide-Based Electrode Materials for Energy Storage Applications: How Close Are We to the Theoretical Capacitance?
journal, August 2018