Enhanced photocatalytic activity induced by sp3 to sp2 transition of carbon dopants in BiOCl crystals
- Chongqing University (China)
- Chongqing University (China); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Chinese Academy of Sciences (CAS), Beijing (China)
- King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)
The insufficient light absorption and low quantum efficiency limit the photocatalytic performance of wide bandgap semiconductors. Here, in this study, we report a facile strategy to engineer the surface disordered defects of BiOCl nanosheets via carbon doping. The surface defects boost the light absorption and also the quantum yields, as the doped carbon atoms exhibit a transition from sp3 to sp2 hybridization at elevated temperature, corresponding toa change of assembly state from 3D cluster to 2D graphite-like structure. This transition results in an effective charge separation and thus one order of enhancement in photocatalytic activity toward phenol degradation under visible light. The current study opens an avenue to introduce sp3 to sp2 transition of carbon dopants for simultaneous increment of light absorption and quantum efficiency for application in photocatalysis and energy conversion.
- Research Organization:
- Lawrence Berkeley National Laboratory, Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
- Sponsoring Organization:
- USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR); USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE); USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF); National Science Foundation (NSF); National Natural Science Foundation of China (NSFC); Fundamental Research Funds for the Central Universities; USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Grant/Contract Number:
- AC02-05CH11231; ACI-1053575; DMR160118; 51302329; 51501024; 106112015CDJXY130010; 106112016CDJZR135506
- OSTI ID:
- 1495831
- Alternate ID(s):
- OSTI ID: 1462040
- Journal Information:
- Applied Catalysis. B, Environmental, Vol. 221, Issue C; ISSN 0926-3373
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Photoluminescence and photocatalytic properties of BiOCl and Bi{sub 24}O{sub 31}Cl{sub 10} nanostructures synthesized by electrolytic corrosion of metal Bi
Synthesis of cuboid BiOCl nanosheets coupled with CdS quantum dots by region-selective deposition process with enhanced photocatalytic activity