skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Linked Picolinamide Nickel Complexes as Redox Carriers for Nonaqueous Flow Batteries

Abstract

Here, the use of nickel complexes utilizing non–innocent ligands based on picolinamide to function as redox carriers in flow batteries was explored. The picolinamide moiety was linked together with –CH2CH2– (bpen), –CH2CH2CH2– (bppn), and –C6H4– (bpb) moieties, resulting in two, three, and four quasi–reversible waves, respectively, for the nickel complexes and >3 V difference between the outermost positive and negative waves. The redox events were theoretically modelled for each complex, showing excellent agreement (<0.3 V difference) between the experimental and modelled potentials. Bulk cycling of the most soluble complex, Ni(bppn), indicated only one of the three waves was reversible. Therefore, Ni(bppn) has the ability to act as a negative charge redox carrier in flow cells.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1495174
Alternate Identifier(s):
OSTI ID: 1493930
Report Number(s):
LA-UR-19-20609
Journal ID: ISSN 1864-5631
Grant/Contract Number:  
89233218CNA000001; 20170046DR
Resource Type:
Accepted Manuscript
Journal Name:
ChemSusChem
Additional Journal Information:
Journal Volume: 12; Journal Issue: 7; Journal ID: ISSN 1864-5631
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Energy Sciences; batteries; nickel; nonaqueous; redox flow battery; redox potentials

Citation Formats

Chu, Terry, Popov, Ivan Aleksandrovich, Andrade, Gabriel A., Maurya, Sandip, Yang, Ping, Batista, Enrique Ricardo, Scott, Brian Lindley, Mukundan, Rangachary, and Davis, Benjamin L. Linked Picolinamide Nickel Complexes as Redox Carriers for Nonaqueous Flow Batteries. United States: N. p., 2019. Web. doi:10.1002/cssc.201802985.
Chu, Terry, Popov, Ivan Aleksandrovich, Andrade, Gabriel A., Maurya, Sandip, Yang, Ping, Batista, Enrique Ricardo, Scott, Brian Lindley, Mukundan, Rangachary, & Davis, Benjamin L. Linked Picolinamide Nickel Complexes as Redox Carriers for Nonaqueous Flow Batteries. United States. doi:10.1002/cssc.201802985.
Chu, Terry, Popov, Ivan Aleksandrovich, Andrade, Gabriel A., Maurya, Sandip, Yang, Ping, Batista, Enrique Ricardo, Scott, Brian Lindley, Mukundan, Rangachary, and Davis, Benjamin L. Thu . "Linked Picolinamide Nickel Complexes as Redox Carriers for Nonaqueous Flow Batteries". United States. doi:10.1002/cssc.201802985. https://www.osti.gov/servlets/purl/1495174.
@article{osti_1495174,
title = {Linked Picolinamide Nickel Complexes as Redox Carriers for Nonaqueous Flow Batteries},
author = {Chu, Terry and Popov, Ivan Aleksandrovich and Andrade, Gabriel A. and Maurya, Sandip and Yang, Ping and Batista, Enrique Ricardo and Scott, Brian Lindley and Mukundan, Rangachary and Davis, Benjamin L.},
abstractNote = {Here, the use of nickel complexes utilizing non–innocent ligands based on picolinamide to function as redox carriers in flow batteries was explored. The picolinamide moiety was linked together with –CH2CH2– (bpen), –CH2CH2CH2– (bppn), and –C6H4– (bpb) moieties, resulting in two, three, and four quasi–reversible waves, respectively, for the nickel complexes and >3 V difference between the outermost positive and negative waves. The redox events were theoretically modelled for each complex, showing excellent agreement (<0.3 V difference) between the experimental and modelled potentials. Bulk cycling of the most soluble complex, Ni(bppn), indicated only one of the three waves was reversible. Therefore, Ni(bppn) has the ability to act as a negative charge redox carrier in flow cells.},
doi = {10.1002/cssc.201802985},
journal = {ChemSusChem},
number = 7,
volume = 12,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Mechanism-Based Development of a Low-Potential, Soluble, and Cyclable Multielectron Anolyte for Nonaqueous Redox Flow Batteries
journal, November 2016

  • Sevov, Christo S.; Fisher, Sydney L.; Thompson, Levi T.
  • Journal of the American Chemical Society, Vol. 138, Issue 47
  • DOI: 10.1021/jacs.6b07638

Structural effects on electrochemical properties of the carboxamide complexes [NiII(Mebpb)] and [NiII(Mebqb)]
journal, August 2009


Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries
journal, January 2014

  • Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.
  • Energy & Environmental Science, Vol. 7, Issue 11, p. 3459-3477
  • DOI: 10.1039/C4EE02158D

Gold(III) Complexes of Pyridyl- and Isoquinolylamido Ligands: Structural, Spectroscopic, and Biological Studies of a New Class of Dual Topoisomerase I and II Inhibitors
journal, July 2013

  • Wilson, Colin R.; Fagenson, Alexander M.; Ruangpradit, Wanvipa
  • Inorganic Chemistry, Vol. 52, Issue 14
  • DOI: 10.1021/ic400339z

Progress in Flow Battery Research and Development
journal, June 2011

  • Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.
  • Journal of The Electrochemical Society, Vol. 158, Issue 8, p. R55-R79
  • DOI: 10.1149/1.3599565

Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries
journal, January 2018

  • VanGelder, L. E.; Kosswattaarachchi, A. M.; Forrestel, P. L.
  • Chemical Science, Vol. 9, Issue 6
  • DOI: 10.1039/C7SC05295B

[1,3-Bis(pyridine-2-carboxamido)propane]palladium(II) monohydrate and its nickel(II) analogue
journal, May 1999

  • Tamura, M.; Kajikawa, Y.; Azuma, N.
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 55, Issue 5
  • DOI: 10.1107/S0108270198016412

Feasibility of a Supporting‐Salt‐Free Nonaqueous Redox Flow Battery Utilizing Ionic Active Materials
journal, March 2017

  • Milshtein, Jarrod D.; Fisher, Sydney L.; Breault, Tanya M.
  • ChemSusChem, Vol. 10, Issue 9
  • DOI: 10.1002/cssc.201700028

Nickel(ii) complexes with amide ligands: oxidative dehydrogenation of the amines in a tetradentate diamide–diamine ligand
journal, January 2002

  • Weeks, Colin L.; Turner, Peter; Fenton, Ronald R.
  • Journal of the Chemical Society, Dalton Transactions, Issue 6
  • DOI: 10.1039/b107378h

Functionalization of Cp 4 Fe 4 (CO) 4 :  Contrasts and Comparisons with Ferrocene
journal, January 1998

  • Westmeyer, Mark D.; Massa, Mark A.; Rauchfuss, Thomas B.
  • Journal of the American Chemical Society, Vol. 120, Issue 1
  • DOI: 10.1021/ja972557t

Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries
journal, November 2010

  • Liu, Qinghua; Shinkle, Aaron A.; Li, Yongdan
  • Electrochemistry Communications, Vol. 12, Issue 11, p. 1634-1637
  • DOI: 10.1016/j.elecom.2010.09.013

A tetradentate Ni(II) complex cation as a single redox couple for non-aqueous flow batteries
journal, June 2015


Redox flow batteries a review
journal, September 2011

  • Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.
  • Journal of Applied Electrochemistry, Vol. 41, Issue 10, p. 1137-1164
  • DOI: 10.1007/s10800-011-0348-2

Oxidation catalysis with semi-inorganic zeolite-based Mn catalysts
journal, March 1997

  • Knops-Gerrits, Peter-Paul; De Vos, Dirk E.; Jacobs, Peter A.
  • Journal of Molecular Catalysis A: Chemical, Vol. 117, Issue 1-3
  • DOI: 10.1016/S1381-1169(96)00358-5

Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries
journal, January 2015

  • Suttil, J. A.; Kucharyson, J. F.; Escalante-Garcia, I. L.
  • Journal of Materials Chemistry A, Vol. 3, Issue 15
  • DOI: 10.1039/C4TA06622G

Non-Aqueous Redox Flow Batteries with Nickel and Iron Tris(2,2ʹ-bipyridine) Complex Electrolyte
journal, January 2012

  • Mun, Junyoung; Lee, Myung-Jin; Park, Joung-Won
  • Electrochemical and Solid-State Letters, Vol. 15, Issue 6
  • DOI: 10.1149/2.033206esl

Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries
journal, July 2011

  • Sleightholme, Alice E. S.; Shinkle, Aaron A.; Liu, Qinghua
  • Journal of Power Sources, Vol. 196, Issue 13, p. 5742-5745
  • DOI: 10.1016/j.jpowsour.2011.02.020

A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage
journal, March 2011

  • Li, Liyu; Kim, Soowhan; Wang, Wei
  • Advanced Energy Materials, Vol. 1, Issue 3, p. 394-400
  • DOI: 10.1002/aenm.201100008

Synthesis, structure, and electrochemistry of pyridinecarboxamide cobalt(III) complexes; the effect of bridge substituents on the redox properties
journal, September 2008


Complexes Containing Redox Noninnocent Ligands for Symmetric, Multielectron Transfer Nonaqueous Redox Flow Batteries
journal, June 2015

  • Cabrera, Pablo J.; Yang, Xingyi; Suttil, James A.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 28
  • DOI: 10.1021/acs.jpcc.5b03582

Flow Batteries: Current Status and Trends
journal, September 2015

  • Soloveichik, Grigorii L.
  • Chemical Reviews, Vol. 115, Issue 20
  • DOI: 10.1021/cr500720t

Calculation of One-Electron Redox Potentials Revisited. Is It Possible to Calculate Accurate Potentials with Density Functional Methods?
journal, June 2009

  • Roy, Lindsay E.; Jakubikova, Elena; Guthrie, M. Graham
  • The Journal of Physical Chemistry A, Vol. 113, Issue 24
  • DOI: 10.1021/jp811388w

New zinc catalysts based on easy-to-handle N4-chelating ligands for the coupling reaction of epoxides with CO2
journal, May 2015

  • Adolph, Michael; Zevaco, Thomas A.; Altesleben, Christiane
  • Journal of Molecular Catalysis A: Chemical, Vol. 400
  • DOI: 10.1016/j.molcata.2015.01.028

Chemical Redox Agents for Organometallic Chemistry
journal, January 1996

  • Connelly, Neil G.; Geiger, William E.
  • Chemical Reviews, Vol. 96, Issue 2
  • DOI: 10.1021/cr940053x

A metal-free organic–inorganic aqueous flow battery
journal, January 2014

  • Huskinson, Brian; Marshak, Michael P.; Suh, Changwon
  • Nature, Vol. 505, Issue 7482, p. 195-198
  • DOI: 10.1038/nature12909

    Works referencing / citing this record:

    CCDC 1590075: Experimental Crystal Structure Determination
    dataset, January 2019


    A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage
    journal, March 2011

    • Li, Liyu; Kim, Soowhan; Wang, Wei
    • Advanced Energy Materials, Vol. 1, Issue 3, p. 394-400
    • DOI: 10.1002/aenm.201100008

    Feasibility of a Supporting‐Salt‐Free Nonaqueous Redox Flow Battery Utilizing Ionic Active Materials
    journal, March 2017

    • Milshtein, Jarrod D.; Fisher, Sydney L.; Breault, Tanya M.
    • ChemSusChem, Vol. 10, Issue 9
    • DOI: 10.1002/cssc.201700028

    Redox flow batteries a review
    journal, September 2011

    • Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.
    • Journal of Applied Electrochemistry, Vol. 41, Issue 10, p. 1137-1164
    • DOI: 10.1007/s10800-011-0348-2

    Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries
    journal, November 2010

    • Liu, Qinghua; Shinkle, Aaron A.; Li, Yongdan
    • Electrochemistry Communications, Vol. 12, Issue 11, p. 1634-1637
    • DOI: 10.1016/j.elecom.2010.09.013

    Structural effects on electrochemical properties of the carboxamide complexes [NiII(Mebpb)] and [NiII(Mebqb)]
    journal, August 2009


    Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries
    journal, July 2011

    • Sleightholme, Alice E. S.; Shinkle, Aaron A.; Liu, Qinghua
    • Journal of Power Sources, Vol. 196, Issue 13, p. 5742-5745
    • DOI: 10.1016/j.jpowsour.2011.02.020

    A tetradentate Ni(II) complex cation as a single redox couple for non-aqueous flow batteries
    journal, June 2015


    New zinc catalysts based on easy-to-handle N4-chelating ligands for the coupling reaction of epoxides with CO2
    journal, May 2015

    • Adolph, Michael; Zevaco, Thomas A.; Altesleben, Christiane
    • Journal of Molecular Catalysis A: Chemical, Vol. 400
    • DOI: 10.1016/j.molcata.2015.01.028

    Synthesis, structure, and electrochemistry of pyridinecarboxamide cobalt(III) complexes; the effect of bridge substituents on the redox properties
    journal, September 2008


    Oxidation catalysis with semi-inorganic zeolite-based Mn catalysts
    journal, March 1997

    • Knops-Gerrits, Peter-Paul; De Vos, Dirk E.; Jacobs, Peter A.
    • Journal of Molecular Catalysis A: Chemical, Vol. 117, Issue 1-3
    • DOI: 10.1016/s1381-1169(96)00358-5

    Complexes Containing Redox Noninnocent Ligands for Symmetric, Multielectron Transfer Nonaqueous Redox Flow Batteries
    journal, June 2015

    • Cabrera, Pablo J.; Yang, Xingyi; Suttil, James A.
    • The Journal of Physical Chemistry C, Vol. 119, Issue 28
    • DOI: 10.1021/acs.jpcc.5b03582

    Flow Batteries: Current Status and Trends
    journal, September 2015

    • Soloveichik, Grigorii L.
    • Chemical Reviews, Vol. 115, Issue 20
    • DOI: 10.1021/cr500720t

    Chemical Redox Agents for Organometallic Chemistry
    journal, January 1996

    • Connelly, Neil G.; Geiger, William E.
    • Chemical Reviews, Vol. 96, Issue 2
    • DOI: 10.1021/cr940053x

    Gold(III) Complexes of Pyridyl- and Isoquinolylamido Ligands: Structural, Spectroscopic, and Biological Studies of a New Class of Dual Topoisomerase I and II Inhibitors
    journal, July 2013

    • Wilson, Colin R.; Fagenson, Alexander M.; Ruangpradit, Wanvipa
    • Inorganic Chemistry, Vol. 52, Issue 14
    • DOI: 10.1021/ic400339z

    Functionalization of Cp 4 Fe 4 (CO) 4 :  Contrasts and Comparisons with Ferrocene
    journal, January 1998

    • Westmeyer, Mark D.; Massa, Mark A.; Rauchfuss, Thomas B.
    • Journal of the American Chemical Society, Vol. 120, Issue 1
    • DOI: 10.1021/ja972557t

    Mechanism-Based Development of a Low-Potential, Soluble, and Cyclable Multielectron Anolyte for Nonaqueous Redox Flow Batteries
    journal, November 2016

    • Sevov, Christo S.; Fisher, Sydney L.; Thompson, Levi T.
    • Journal of the American Chemical Society, Vol. 138, Issue 47
    • DOI: 10.1021/jacs.6b07638

    Calculation of One-Electron Redox Potentials Revisited. Is It Possible to Calculate Accurate Potentials with Density Functional Methods?
    journal, June 2009

    • Roy, Lindsay E.; Jakubikova, Elena; Guthrie, M. Graham
    • The Journal of Physical Chemistry A, Vol. 113, Issue 24
    • DOI: 10.1021/jp811388w

    A metal-free organic–inorganic aqueous flow battery
    journal, January 2014

    • Huskinson, Brian; Marshak, Michael P.; Suh, Changwon
    • Nature, Vol. 505, Issue 7482, p. 195-198
    • DOI: 10.1038/nature12909

    Nickel(ii) complexes with amide ligands: oxidative dehydrogenation of the amines in a tetradentate diamide–diamine ligand
    journal, January 2002

    • Weeks, Colin L.; Turner, Peter; Fenton, Ronald R.
    • Journal of the Chemical Society, Dalton Transactions, Issue 6
    • DOI: 10.1039/b107378h

    Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries
    journal, January 2014

    • Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.
    • Energy & Environmental Science, Vol. 7, Issue 11, p. 3459-3477
    • DOI: 10.1039/c4ee02158d

    Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries
    journal, January 2015

    • Suttil, J. A.; Kucharyson, J. F.; Escalante-Garcia, I. L.
    • Journal of Materials Chemistry A, Vol. 3, Issue 15
    • DOI: 10.1039/c4ta06622g

    Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries
    journal, January 2018

    • VanGelder, L. E.; Kosswattaarachchi, A. M.; Forrestel, P. L.
    • Chemical Science, Vol. 9, Issue 6
    • DOI: 10.1039/c7sc05295b

    [1,3-Bis(pyridine-2-carboxamido)propane]palladium(II) monohydrate and its nickel(II) analogue
    journal, May 1999

    • Tamura, M.; Kajikawa, Y.; Azuma, N.
    • Acta Crystallographica Section C Crystal Structure Communications, Vol. 55, Issue 5
    • DOI: 10.1107/s0108270198016412

    Progress in Flow Battery Research and Development
    journal, June 2011

    • Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.
    • Journal of The Electrochemical Society, Vol. 158, Issue 8, p. R55-R79
    • DOI: 10.1149/1.3599565

    Non-Aqueous Redox Flow Batteries with Nickel and Iron Tris(2,2ʹ-bipyridine) Complex Electrolyte
    journal, January 2012

    • Mun, Junyoung; Lee, Myung-Jin; Park, Joung-Won
    • Electrochemical and Solid-State Letters, Vol. 15, Issue 6
    • DOI: 10.1149/2.033206esl

    Progress in the Design of Polyoxovanadate-Alkoxides as Charge Carriers for Nonaqueous Redox Flow Batteries
    journal, March 2019