skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: New aspects of improving the performance of WO 3 thin films for photoelectrochemical water splitting by tuning the ultrathin depletion region

Abstract

In this paper, we explored a facile, scalable and effective method for substantially enhancing photocurrent and incident-photon-to-current efficiency of WO 3 thin-film photoanodes by a mild reduction treatment under low oxygen pressure. Experimental data from photoelectrochemical and electrochemical impedance spectroscopies have shown that such treatment can increase the charge carrier density on WO 3 photoanode surfaces resulting in improvements in hole collection efficiency and reduction in charge recombination. Despite a much thinner layer of WO 3 (about 500 nm) compared to those in other published studies, the electrodes exhibited an ultra-high photocurrent density of 1.81 mA cm –2 at 1.23 V vs. RHE. This current density is one of the highest ones among WO 3-based photoanodes described in literature. As a result, the proposed surface modulation approach offers an effective and scalable method to prepare high-performance thin film photoanodes for photoelectrochemical water splitting.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1];  [3]; ORCiD logo [3];  [1]
  1. Stony Brook Univ., Stony Brook, NY (United States)
  2. Stony Brook Univ., Stony Brook, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1495001
Report Number(s):
BNL-211262-2019-JAAM
Journal ID: ISSN 2046-2069; RSCACL
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
RSC Advances
Additional Journal Information:
Journal Volume: 9; Journal Issue: 2; Journal ID: ISSN 2046-2069
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Cen, Jiajie, Wu, Qiyuan, Yan, Danhua, Zhang, Wenrui, Zhao, Yue, Tong, Xiao, Liu, Mingzhao, and Orlov, Alexander. New aspects of improving the performance of WO3 thin films for photoelectrochemical water splitting by tuning the ultrathin depletion region. United States: N. p., 2019. Web. doi:10.1039/C8RA08875F.
Cen, Jiajie, Wu, Qiyuan, Yan, Danhua, Zhang, Wenrui, Zhao, Yue, Tong, Xiao, Liu, Mingzhao, & Orlov, Alexander. New aspects of improving the performance of WO3 thin films for photoelectrochemical water splitting by tuning the ultrathin depletion region. United States. doi:10.1039/C8RA08875F.
Cen, Jiajie, Wu, Qiyuan, Yan, Danhua, Zhang, Wenrui, Zhao, Yue, Tong, Xiao, Liu, Mingzhao, and Orlov, Alexander. Tue . "New aspects of improving the performance of WO3 thin films for photoelectrochemical water splitting by tuning the ultrathin depletion region". United States. doi:10.1039/C8RA08875F. https://www.osti.gov/servlets/purl/1495001.
@article{osti_1495001,
title = {New aspects of improving the performance of WO3 thin films for photoelectrochemical water splitting by tuning the ultrathin depletion region},
author = {Cen, Jiajie and Wu, Qiyuan and Yan, Danhua and Zhang, Wenrui and Zhao, Yue and Tong, Xiao and Liu, Mingzhao and Orlov, Alexander},
abstractNote = {In this paper, we explored a facile, scalable and effective method for substantially enhancing photocurrent and incident-photon-to-current efficiency of WO3 thin-film photoanodes by a mild reduction treatment under low oxygen pressure. Experimental data from photoelectrochemical and electrochemical impedance spectroscopies have shown that such treatment can increase the charge carrier density on WO3 photoanode surfaces resulting in improvements in hole collection efficiency and reduction in charge recombination. Despite a much thinner layer of WO3 (about 500 nm) compared to those in other published studies, the electrodes exhibited an ultra-high photocurrent density of 1.81 mA cm–2 at 1.23 V vs. RHE. This current density is one of the highest ones among WO3-based photoanodes described in literature. As a result, the proposed surface modulation approach offers an effective and scalable method to prepare high-performance thin film photoanodes for photoelectrochemical water splitting.},
doi = {10.1039/C8RA08875F},
journal = {RSC Advances},
number = 2,
volume = 9,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Figure 1 Figure 1: a, Current density vs. potential under front-side AM 1.5 illumination for the as-prepared WO3 photoanodes (R-0). The vertical line indicates the thermodynamic potential for oxygen evolution (1.23 VRHE). b, Cross-sectional SEM image of WO3 thin film sample prepared by 40k laser pulses. c, UV-vis spectrum of as-prepared WO3more » photoanodes (R-0) with Tauc plot inserted. d, SEM image of as-prepared WO3 photoanodes (R-0).« less

Save / Share:

Works referenced in this record:

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

Quasi-1D hyperbranched WO 3 nanostructures for low-voltage photoelectrochemical water splitting
journal, January 2015

  • Balandeh, Mehrdad; Mezzetti, Alessandro; Tacca, Alessandra
  • Journal of Materials Chemistry A, Vol. 3, Issue 11
  • DOI: 10.1039/C4TA06786J

Photoelectrochemical Behavior of Hierarchically Structured Si/WO 3 Core–Shell Tandem Photoanodes
journal, April 2014

  • Coridan, Robert H.; Arpin, Kevin A.; Brunschwig, Bruce S.
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl404623t

A tree-like nanoporous WO 3 photoanode with enhanced charge transport efficiency for photoelectrochemical water oxidation
journal, January 2015

  • Shin, Sun; Han, Hyun Soo; Kim, Ju Seong
  • Journal of Materials Chemistry A, Vol. 3, Issue 24
  • DOI: 10.1039/C5TA00823A

Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals
journal, June 1970


Nanostructured photoelectrodes based on WO 3 : applications to photooxidation of aqueous electrolytes
journal, January 2013

  • Bignozzi, Carlo Alberto; Caramori, Stefano; Cristino, Vito
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35373C

Photoelectrochemical water splitting with a SrTiO 3 :Nb/SrTiO 3 n + –n homojunction structure
journal, January 2017

  • Cen, Jiajie; Wu, Qiyuan; Yan, Danhua
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 4
  • DOI: 10.1039/C6CP07111B

Photoanodes Based on Nanostructured WO3 for Water Splitting
journal, April 2012

  • Tacca, Alessandra; Meda, Laura; Marra, Gianluigi
  • ChemPhysChem, Vol. 13, Issue 12
  • DOI: 10.1002/cphc.201200069

Enhancement of the Photoelectrochemical Performance of WO 3 Vertical Arrays Film for Solar Water Splitting by Gadolinium Doping
journal, June 2015

  • Liu, Yang; Li, Jie; Li, Wenzhang
  • The Journal of Physical Chemistry C, Vol. 119, Issue 27
  • DOI: 10.1021/acs.jpcc.5b00966

Novel WO 3 /Sb 2 S 3 Heterojunction Photocatalyst Based on WO 3 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting
journal, April 2016

  • Zhang, Jing; Liu, Zhihua; Liu, Zhifeng
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 15
  • DOI: 10.1021/acsami.6b00429

Developing new understanding of photoelectrochemical water splitting via in-situ techniques: A review on recent progress
journal, April 2017


Rationally Designed/Constructed CoO x /WO 3 Anode for Efficient Photoelectrochemical Water Oxidation
journal, February 2017


Semiconductor-Based Photoelectrochemical Water Splitting at the Limit of Very Wide Depletion Region
journal, November 2015

  • Liu, Mingzhao; Lyons, John L.; Yan, Danhua
  • Advanced Functional Materials, Vol. 26, Issue 2
  • DOI: 10.1002/adfm.201503692

Photoelectrolysis and physical properties of the semiconducting electrode WO 2
journal, May 1977

  • Butler, M. A.
  • Journal of Applied Physics, Vol. 48, Issue 5
  • DOI: 10.1063/1.323948

Crystallographically Oriented Mesoporous WO3 Films:  Synthesis, Characterization, and Applications
journal, October 2001

  • Santato, Clara; Odziemkowski, Marek; Ulmann, Martine
  • Journal of the American Chemical Society, Vol. 123, Issue 43, p. 10639-10649
  • DOI: 10.1021/ja011315x

Photolelectrochemistry of Nanostructured WO 3 Thin Film Electrodes for Water Oxidation:  Mechanism of Electron Transport
journal, June 2000

  • Wang, Heli; Lindgren, Torbjörn; He, Jianjun
  • The Journal of Physical Chemistry B, Vol. 104, Issue 24
  • DOI: 10.1021/jp0002751

Films of WO3 plate-like arrays with oxygen vacancies proportionally controlled via rapid chemical reduction
journal, January 2018


Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrodes
journal, January 2014

  • Pala, Ragip A.; Leenheer, Andrew J.; Lichterman, Michael
  • Energy Environ. Sci., Vol. 7, Issue 10
  • DOI: 10.1039/C4EE01580K

Anomalous Conductivity Tailored by Domain-Boundary Transport in Crystalline Bismuth Vanadate Photoanodes
journal, February 2018


Exposure of WO 3 Photoanodes to Ultraviolet Light Enhances Photoelectrochemical Water Oxidation
journal, September 2016

  • Li, Tengfei; He, Jingfu; Peña, Bruno
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 38
  • DOI: 10.1021/acsami.6b08152

Electron spin resonance of defects in single crystal and thin films of tungsten trioxide
journal, August 1977


Passivating surface states on water splitting hematite photoanodes with alumina overlayers
journal, January 2011

  • Le Formal, Florian; Tétreault, Nicolas; Cornuz, Maurin
  • Chemical Science, Vol. 2, Issue 4, p. 737-743
  • DOI: 10.1039/C0SC00578A

Dual Oxygen and Tungsten Vacancies on a WO 3 Photoanode for Enhanced Water Oxidation
journal, August 2016

  • Ma, Ming; Zhang, Kan; Li, Ping
  • Angewandte Chemie International Edition, Vol. 55, Issue 39
  • DOI: 10.1002/anie.201605247

Tungsten Oxide Single Crystal Nanosheets for Enhanced Multichannel Solar Light Harvesting
journal, January 2015


Enhanced photoelectrochemical properties of WO3 thin films fabricated by reactive magnetron sputtering
journal, April 2011

  • Vidyarthi, Vinay Shankar; Hofmann, Martin; Savan, Alan
  • International Journal of Hydrogen Energy, Vol. 36, Issue 8
  • DOI: 10.1016/j.ijhydene.2011.01.087

Highly Efficient and Stable Solar Water Splitting at (Na)WO 3 Photoanodes in Acidic Electrolyte Assisted by Non-Noble Metal Oxygen Evolution Catalyst
journal, May 2016

  • Sarnowska, Marta; Bienkowski, Krzysztof; Barczuk, Piotr J.
  • Advanced Energy Materials, Vol. 6, Issue 14
  • DOI: 10.1002/aenm.201600526

Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte
journal, January 2014

  • Spurgeon, Joshua M.; Velazquez, Jesus M.; McDowell, Matthew T.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 8
  • DOI: 10.1039/c3cp55527e

Nanostructured Tungsten Oxide - Properties, Synthesis, and Applications
journal, May 2011

  • Zheng, Haidong; Ou, Jian Zhen; Strano, Michael S.
  • Advanced Functional Materials, Vol. 21, Issue 12
  • DOI: 10.1002/adfm.201002477

Role of Tungsten Doping on the Surface States in BiVO 4 Photoanodes for Water Oxidation: Tuning the Electron Trapping Process
journal, March 2018


Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC)
journal, March 1976

  • Hodes, Gary; Cahen, David; Manassen, Joost
  • Nature, Vol. 260, Issue 5549
  • DOI: 10.1038/260312a0

WO3 photocatalysts: Influence of structure and composition
journal, October 2012


Oxygen vacancy engineering of WO3 toward largely enhanced photoelectrochemical water splitting
journal, June 2018


WO 3 Nanoflakes for Enhanced Photoelectrochemical Conversion
journal, November 2014

  • Li, Wenjie; Da, Peimei; Zhang, Yueyu
  • ACS Nano, Vol. 8, Issue 11
  • DOI: 10.1021/nn5053684

Kinetic analysis of photoelectrochemical water oxidation by mesostructured Co-Pi/α-Fe 2 O 3 photoanodes
journal, January 2016

  • Carroll, Gerard M.; Gamelin, Daniel R.
  • Journal of Materials Chemistry A, Vol. 4, Issue 8
  • DOI: 10.1039/C5TA06978E

In situ synthesis of Bi2S3 sensitized WO3 nanoplate arrays with less interfacial defects and enhanced photoelectrochemical performance
journal, March 2016

  • Liu, Canjun; Yang, Yahui; Li, Wenzhang
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep23451

Structural Stability and Phase Transitions in WO 3 Thin Films
journal, June 2006

  • Ramana, C. V.; Utsunomiya, S.; Ewing, R. C.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 21
  • DOI: 10.1021/jp056664i

A comprehensive review on PEM water electrolysis
journal, April 2013

  • Carmo, Marcelo; Fritz, David L.; Mergel, Jürgen
  • International Journal of Hydrogen Energy, Vol. 38, Issue 12, p. 4901-4934
  • DOI: 10.1016/j.ijhydene.2013.01.151

Enhanced Charge Separation and Collection in High-Performance Electrodeposited Hematite Films
journal, January 2016


WO 3 /g-C 3 N 4 composites: one-pot preparation and enhanced photocatalytic H 2 production under visible-light irradiation
journal, March 2017


Hydrogen-treated WO3 nanoflakes show enhanced photostability
journal, January 2012

  • Wang, Gongming; Ling, Yichuan; Wang, Hanyu
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee03158b

Enhanced photoelectrochemical performance of plate-like WO 3 induced by surface oxygen vacancies
journal, July 2016


Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates
journal, April 1987

  • Daniel, M. F.; Desbat, B.; Lassegues, J. C.
  • Journal of Solid State Chemistry, Vol. 67, Issue 2, p. 235-247
  • DOI: 10.1016/0022-4596(87)90359-8

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.