Local-environment dependence of stacking fault energies in concentrated solid-solution alloys
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; City Univ. of Hong Kong (China). Dept. of Mechanical Engineering
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering
Concentrated solid-solution alloys (CSAs) based on 3d transition metals have demonstrated extraordinary mechanical properties and radiation resistance associated with their low stacking fault energies (SFEs). Owing to the intrinsic disorder, SFEs in CSAs exhibit distributions depending on local atomic configurations. In this work, the distribution of SFEs in equiatomic CSAs of NiCo, NiFe, and NiCoCr are investigated based on empirical potential and first-principles calculations. We show that the calculated distribution of SFEs in chemically disordered CSAs depends on the stacking fault area using empirical potential calculations. Based on electronic structure calculations, we find that local variations of SFEs in CSAs correlate with the charge density redistribution in the stacking fault region. We further propose a bond breaking and forming model to understand and predict the SFEs in CSAs based on the local structure alone. It is shown that the perturbation induced by a stacking fault is localized in the first-nearest planes for NiCo, but extends up to the third nearest planes for NiFe and NiCoCr because of partially filled d electrons in Fe and Cr.
- Research Organization:
- Energy Frontier Research Centers (EFRC) (United States). Energy Dissipation to Defect Evolution (EDDE); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1494881
- Journal Information:
- npj Computational Materials, Vol. 5, Issue 1; ISSN 2057-3960
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys
Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys