DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design and Synthesis of Imidazolium-Mediated Tröger’s Base-Containing Ionene Polymers for Advanced CO 2 Separation Membranes

Abstract

It is highly desirable to integrate the CO2 solubility benefits of ionic liquids (ILs) in polymeric membrane systems for effective CO2 separations. Herein, we are exclusively exploring a series of four novel imidazolium-mediated Tröger’s base (TB)-containing ionene polymers for enhanced CO2 separation. The two diimidazole-functionalized Tröger’s base monomers synthesized from “ortho”- and “para”-substituted imidazole anilines were polymerized with equimolar amounts of two different aromatic and aliphatic comonomers (α,α'-dichloro-p-xylene and 1,10-dibromodecane, respectively) via Menshutkin reactions to obtain four respective ionene polymers ([Im-TB(o&p)-Xy][Cl] and ([Im-TB(o&p)-C10][Br], respectively). The resulting ionene polymers having halide anions were exchanged with [Tf2N]- anions, yielding a novel Tröger’s base material [Im-TB(x)-R][Tf2N] or “Im-TB-Ionenes”. The structural and physical properties as well as the gas separation behaviors of the copolymers of aromatic and aliphatic Im-TB-Ionenes have been extensively investigated with respect to the regiochemistry of imidazolium groups at the ortho and para positions of the TB unit. The imidazolium-mediated TB-Ionenes showed high CO2 solubility and hence an excellent CO2/CH4 permselectivity of 82.5. The Im-TB-Ionenes also displayed good thermal and mechanical stabilities.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [2]
  1. Department of Chemical & Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35487-0203, United States
  2. NASA Marshall Space Flight Center, Huntsville, Alabama 35812, United States
Publication Date:
Research Org.:
Univ. of Alabama, Tuscaloosa, AL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1494862
Alternate Identifier(s):
OSTI ID: 1508826; OSTI ID: 1830539
Grant/Contract Number:  
SC0018181; CHE-1726812; 80MSFC18M0041
Resource Type:
Published Article
Journal Name:
ACS Omega
Additional Journal Information:
Journal Name: ACS Omega Journal Volume: 4 Journal Issue: 2; Journal ID: ISSN 2470-1343
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Salts; Membranes; Solubility; Permeability; Polymers

Citation Formats

Kammakakam, Irshad, O’Harra, Kathryn E., Bara, Jason E., and Jackson, Enrique M. Design and Synthesis of Imidazolium-Mediated Tröger’s Base-Containing Ionene Polymers for Advanced CO 2 Separation Membranes. United States: N. p., 2019. Web. doi:10.1021/acsomega.8b03700.
Kammakakam, Irshad, O’Harra, Kathryn E., Bara, Jason E., & Jackson, Enrique M. Design and Synthesis of Imidazolium-Mediated Tröger’s Base-Containing Ionene Polymers for Advanced CO 2 Separation Membranes. United States. https://doi.org/10.1021/acsomega.8b03700
Kammakakam, Irshad, O’Harra, Kathryn E., Bara, Jason E., and Jackson, Enrique M. Fri . "Design and Synthesis of Imidazolium-Mediated Tröger’s Base-Containing Ionene Polymers for Advanced CO 2 Separation Membranes". United States. https://doi.org/10.1021/acsomega.8b03700.
@article{osti_1494862,
title = {Design and Synthesis of Imidazolium-Mediated Tröger’s Base-Containing Ionene Polymers for Advanced CO 2 Separation Membranes},
author = {Kammakakam, Irshad and O’Harra, Kathryn E. and Bara, Jason E. and Jackson, Enrique M.},
abstractNote = {It is highly desirable to integrate the CO2 solubility benefits of ionic liquids (ILs) in polymeric membrane systems for effective CO2 separations. Herein, we are exclusively exploring a series of four novel imidazolium-mediated Tröger’s base (TB)-containing ionene polymers for enhanced CO2 separation. The two diimidazole-functionalized Tröger’s base monomers synthesized from “ortho”- and “para”-substituted imidazole anilines were polymerized with equimolar amounts of two different aromatic and aliphatic comonomers (α,α'-dichloro-p-xylene and 1,10-dibromodecane, respectively) via Menshutkin reactions to obtain four respective ionene polymers ([Im-TB(o&p)-Xy][Cl] and ([Im-TB(o&p)-C10][Br], respectively). The resulting ionene polymers having halide anions were exchanged with [Tf2N]- anions, yielding a novel Tröger’s base material [Im-TB(x)-R][Tf2N] or “Im-TB-Ionenes”. The structural and physical properties as well as the gas separation behaviors of the copolymers of aromatic and aliphatic Im-TB-Ionenes have been extensively investigated with respect to the regiochemistry of imidazolium groups at the ortho and para positions of the TB unit. The imidazolium-mediated TB-Ionenes showed high CO2 solubility and hence an excellent CO2/CH4 permselectivity of 82.5. The Im-TB-Ionenes also displayed good thermal and mechanical stabilities.},
doi = {10.1021/acsomega.8b03700},
journal = {ACS Omega},
number = 2,
volume = 4,
place = {United States},
year = {Fri Feb 15 00:00:00 EST 2019},
month = {Fri Feb 15 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acsomega.8b03700

Citation Metrics:
Cited by: 26 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Tröger’s base-containing diimidazole monomers used in this study.

Save / Share:

Works referenced in this record:

Intrinsically Microporous Soluble Polyimides Incorporating Tröger’s Base for Membrane Gas Separation
journal, May 2014

  • Zhuang, Yongbing; Seong, Jong Geun; Do, Yu Seong
  • Macromolecules, Vol. 47, Issue 10
  • DOI: 10.1021/ma5007073

Gas separation membranes from polymers of intrinsic microporosity
journal, April 2005


Polymers of Intrinsic Microporosity Containing Tröger Base for CO 2 Capture
journal, November 2013

  • Del Regno, Annalaura; Gonciaruk, Aleksandra; Leay, Laura
  • Industrial & Engineering Chemistry Research, Vol. 52, Issue 47
  • DOI: 10.1021/ie402846a

An experimental study of gas transport and separation properties of ionic liquids supported on nanofiltration membranes
journal, September 2006


Synthesis and Characterization of Ionene-Polyamide Materials as Candidates for New Gas Separation Membranes
journal, January 2018

  • Bara, Jason E.; O’Harra, Kathryn E.; Durbin, Marlow M.
  • MRS Advances, Vol. 3, Issue 52
  • DOI: 10.1557/adv.2018.376

Tröger’s Base-Based Microporous Polyimide Membranes for High-Performance Gas Separation
journal, June 2014

  • Wang, Zhenggong; Wang, Dong; Zhang, Feng
  • ACS Macro Letters, Vol. 3, Issue 7
  • DOI: 10.1021/mz500184z

Polymeric membranes for light olefin/paraffin separation
journal, February 2012


Exploitation of Intrinsic Microporosity in Polymer-Based Materials
journal, June 2010

  • McKeown, Neil B.; Budd, Peter M.
  • Macromolecules, Vol. 43, Issue 12
  • DOI: 10.1021/ma1006396

Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes
journal, January 1999


Influence of nanostructure on light gas separations in cross-linked lyotropic liquid crystal membranes
journal, February 2007


Membrane-based gas separation
journal, August 1993


On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2 binary mixtures using polyimide membranes
journal, April 2007

  • Cecopierigomez, M.; Palaciosalquisira, J.; Dominguez, J.
  • Journal of Membrane Science, Vol. 293, Issue 1-2
  • DOI: 10.1016/j.memsci.2007.01.034

Ionic Polyimides: Hybrid Polymer Architectures and Composites with Ionic Liquids for Advanced Gas Separation Membranes
journal, April 2017

  • Mittenthal, Max S.; Flowers, Brian S.; Bara, Jason E.
  • Industrial & Engineering Chemistry Research, Vol. 56, Issue 17
  • DOI: 10.1021/acs.iecr.7b00462

Energy-efficient polymeric gas separation membranes for a sustainable future: A review
journal, August 2013


High-Performance Membranes from Polyimides with Intrinsic Microporosity
journal, July 2008

  • Ghanem, Bader S.; McKeown, Neil B.; Budd, Peter M.
  • Advanced Materials, Vol. 20, Issue 14
  • DOI: 10.1002/adma.200702400

Guide to CO 2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids
journal, March 2009

  • Bara, Jason E.; Carlisle, Trevor K.; Gabriel, Christopher J.
  • Industrial & Engineering Chemistry Research, Vol. 48, Issue 6
  • DOI: 10.1021/ie8016237

A highly rigid and gas selective methanopentacene-based polymer of intrinsic microporosity derived from Tröger's base polymerization
journal, January 2018

  • Williams, Rhodri; Burt, Luke. A.; Esposito, Elisa
  • Journal of Materials Chemistry A, Vol. 6, Issue 14
  • DOI: 10.1039/C8TA00509E

Composite ionic liquid and polymer membranes for gas separation at elevated temperatures
journal, January 2014


Synthesis of cardo-polymers using Tröger's base formation
journal, January 2014

  • Carta, Mariolino; Croad, Matthew; Jansen, Johannes C.
  • Polymer Chemistry, Vol. 5, Issue 18
  • DOI: 10.1039/C4PY00607K

An imidazolium-based ionene blended with crosslinked PEO as a novel polymer membrane for selective CO2 separation
journal, August 2014

  • Kammakakam, Irshad; Rao, Anil H. N.; Yoon, Hee Wook
  • Macromolecular Research, Vol. 22, Issue 8
  • DOI: 10.1007/s13233-014-2125-7

Synthesis and Performance of Polymerizable Room-Temperature Ionic Liquids as Gas Separation Membranes
journal, August 2007

  • Bara, Jason E.; Lessmann, Sonja; Gabriel, Christopher J.
  • Industrial & Engineering Chemistry Research, Vol. 46, Issue 16
  • DOI: 10.1021/ie0704492

Microporous Polyimides with Rationally Designed Chain Structure Achieving High Performance for Gas Separation
journal, October 2014

  • Wang, Zhenggong; Wang, Dong; Jin, Jian
  • Macromolecules, Vol. 47, Issue 21
  • DOI: 10.1021/ma5017506

High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas
journal, January 2012

  • Li, Pei; Paul, D. R.; Chung, Tai-Shung
  • Green Chemistry, Vol. 14, Issue 4
  • DOI: 10.1039/c2gc16354c

Microwave-assisted synthesis of imidazolium ionenes and their application as humidity absorbers
journal, January 2010

  • Erdmenger, Tina; Perevyazko, Igor; Vitz, Jürgen
  • Journal of Materials Chemistry, Vol. 20, Issue 18
  • DOI: 10.1039/b921525e

Synthesis of room temperature ionic liquids based random copolyimides for gas separation applications
journal, February 2013


Efficient CO 2 Capture by a 3D Porous Polymer Derived from Tröger’s Base
journal, July 2013

  • Zhu, Xiang; Do-Thanh, Chi-Linh; Murdock, Christopher R.
  • ACS Macro Letters, Vol. 2, Issue 8
  • DOI: 10.1021/mz4003485

Heterogeneous organocatalysts composed of microporous polymer networks assembled by Tröger's base formation
journal, January 2014

  • Carta, Mariolino; Croad, Matthew; Bugler, Keith
  • Polymer Chemistry, Vol. 5, Issue 18
  • DOI: 10.1039/C4PY00608A

Imidazole Polymers Derived from Ionic Liquid 4-Vinylimidazolium Monomers: Their Synthesis and Thermal and Dielectric Properties
journal, January 2013

  • Smith, Thomas W.; Zhao, Meng; Yang, Fan
  • Macromolecules, Vol. 46, Issue 3
  • DOI: 10.1021/ma300862t

High CO2 solubility in ionic liquids and a tetraalkylammonium-based poly(ionic liquid)
journal, January 2010

  • Supasitmongkol, Somsak; Styring, Peter
  • Energy & Environmental Science, Vol. 3, Issue 12
  • DOI: 10.1039/c0ee00293c

Facile access to imidazole and imidazolium substituted dibenzo-diazocines
journal, January 2014

  • Sathyanarayana, Arruri; Prabusankar, Ganesan
  • New J. Chem., Vol. 38, Issue 8
  • DOI: 10.1039/C4NJ00351A

Advances in high permeability polymeric membrane materials for CO2 separations
journal, January 2012

  • Du, Naiying; Park, Ho Bum; Dal-Cin, Mauro M.
  • Energy & Environmental Science, Vol. 5, Issue 6, p. 7306-7322
  • DOI: 10.1039/C1EE02668B

High-Performance Carboxylated Polymers of Intrinsic Microporosity (PIMs) with Tunable Gas Transport Properties
journal, August 2009

  • Du, Naiying; Robertson, Gilles P.; Song, Jingshe
  • Macromolecules, Vol. 42, Issue 16
  • DOI: 10.1021/ma9009017

Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents
journal, August 2008

  • Bara, Jason E.; Gabriel, Christopher J.; Hatakeyama, Evan S.
  • Journal of Membrane Science, Vol. 321, Issue 1
  • DOI: 10.1016/j.memsci.2007.12.033

An Efficient Polymer Molecular Sieve for Membrane Gas Separations
journal, January 2013


Polymeric ionic liquids with mixtures of counter-anions: a new straightforward strategy for designing pyrrolidinium-based CO2 separation membranes
journal, January 2013

  • Tomé, Liliana C.; Aboudzadeh, M. Ali; Rebelo, Luís Paulo N.
  • Journal of Materials Chemistry A, Vol. 1, Issue 35
  • DOI: 10.1039/c3ta12174g

Blending of compatible polymer of intrinsic microporosity (PIM-1) with Tröger's Base polymer for gas separation membranes
journal, November 2018


Intrinsically Porous Polymer Protects Catalytic Gold Particles for Enzymeless Glucose Oxidation
journal, April 2014

  • Rong, Yuanyang; Malpass-Evans, Richard; Carta, Mariolino
  • Electroanalysis, Vol. 26, Issue 5
  • DOI: 10.1002/elan.201400085

The upper bound revisited
journal, July 2008


Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids
journal, March 2010

  • Cserjési, Petra; Nemestóthy, Nándor; Bélafi-Bakó, Katalin
  • Journal of Membrane Science, Vol. 349, Issue 1-2
  • DOI: 10.1016/j.memsci.2009.10.044

Alkyl imidazolium-functionalized cardo-based poly(ether ketone)s as novel polymer membranes for O2/N2 and CO2/N2 separations
journal, June 2013


Main-chain imidazolium polymer membranes for CO2 separations: An initial study of a new ionic liquid-inspired platform
journal, September 2010

  • Carlisle, Trevor K.; Bara, Jason E.; Lafrate, Andrew L.
  • Journal of Membrane Science, Vol. 359, Issue 1-2
  • DOI: 10.1016/j.memsci.2009.10.022

A Spirobifluorene-Based Polymer of Intrinsic Microporosity with Improved Performance for Gas Separation
journal, September 2012

  • Bezzu, C. Grazia; Carta, Mariolino; Tonkins, Alexander
  • Advanced Materials, Vol. 24, Issue 44
  • DOI: 10.1002/adma.201202393

Membrane Gas Separation: A Review/State of the Art
journal, May 2009

  • Bernardo, P.; Drioli, E.; Golemme, G.
  • Industrial & Engineering Chemistry Research, Vol. 48, Issue 10
  • DOI: 10.1021/ie8019032