DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks

Abstract

DIII-D experiments at low density (ne~1019 m-3) have directly measured whistler waves in the 100–200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limit-cycle-like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission that follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.

Authors:
 [1];  [2];  [3];  [2];  [4];  [3];  [3];  [4];  [5];  [6];  [7];  [7];  [8];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Univ. of California, Irvine, CA (United States)
  3. General Atomics, San Diego, CA (United States)
  4. Oak Ridge Associated Univ., Oak Ridge, TN (United States)
  5. Univ. of California, San Diego, CA (United States)
  6. Univ. of Texas, Austin, TX (United States)
  7. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  8. XCEL Engineering, Oak Ridge, TN (United States)
Publication Date:
Research Org.:
General Atomics, San Diego, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE); USDOE Office of Science (SC)
OSTI Identifier:
1437151
Alternate Identifier(s):
OSTI ID: 1432738; OSTI ID: 1494016; OSTI ID: 1807297
Grant/Contract Number:  
FC02-04ER54698; FG02-07ER54917; SC0016268; AC05-060R23100; FG03-94ER54271; AC02-09CH11466; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 120; Journal Issue: 15; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Spong, D. A., Heidbrink, W. W., Paz-Soldan, C., Du, X. D., Thome, K. E., Van Zeeland, M. A., Collins, C., Lvovskiy, A., Moyer, R. A., Austin, M. E., Brennan, D. P., Liu, C., Jaeger, E. F., and Lau, C. First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks. United States: N. p., 2018. Web. doi:10.1103/PhysRevLett.120.155002.
Spong, D. A., Heidbrink, W. W., Paz-Soldan, C., Du, X. D., Thome, K. E., Van Zeeland, M. A., Collins, C., Lvovskiy, A., Moyer, R. A., Austin, M. E., Brennan, D. P., Liu, C., Jaeger, E. F., & Lau, C. First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks. United States. https://doi.org/10.1103/PhysRevLett.120.155002
Spong, D. A., Heidbrink, W. W., Paz-Soldan, C., Du, X. D., Thome, K. E., Van Zeeland, M. A., Collins, C., Lvovskiy, A., Moyer, R. A., Austin, M. E., Brennan, D. P., Liu, C., Jaeger, E. F., and Lau, C. Wed . "First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks". United States. https://doi.org/10.1103/PhysRevLett.120.155002. https://www.osti.gov/servlets/purl/1437151.
@article{osti_1437151,
title = {First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks},
author = {Spong, D. A. and Heidbrink, W. W. and Paz-Soldan, C. and Du, X. D. and Thome, K. E. and Van Zeeland, M. A. and Collins, C. and Lvovskiy, A. and Moyer, R. A. and Austin, M. E. and Brennan, D. P. and Liu, C. and Jaeger, E. F. and Lau, C.},
abstractNote = {DIII-D experiments at low density (ne~1019 m-3) have directly measured whistler waves in the 100–200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limit-cycle-like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission that follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.},
doi = {10.1103/PhysRevLett.120.155002},
journal = {Physical Review Letters},
number = 15,
volume = 120,
place = {United States},
year = {Wed Apr 11 00:00:00 EDT 2018},
month = {Wed Apr 11 00:00:00 EDT 2018}
}

Journal Article:

Citation Metrics:
Cited by: 50 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Earth Currents
journal, April 1894


Resolving runaway electron distributions in space, time, and energy
journal, May 2018

  • Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5024223

An ITPA joint experiment to study runaway electron generation and suppression
journal, July 2014

  • Granetz, R. S.; Esposito, B.; Kim, J. H.
  • Physics of Plasmas, Vol. 21, Issue 7
  • DOI: 10.1063/1.4886802

Destabilization of magnetosonic-whistler waves by a relativistic runaway beam
journal, June 2006

  • Fülöp, T.; Pokol, G.; Helander, P.
  • Physics of Plasmas, Vol. 13, Issue 6
  • DOI: 10.1063/1.2208327

Whistler Instability in an Electron-Magnetohydrodynamic Spheromak
journal, December 2007


Growth and decay of runaway electrons above the critical electric field under quiescent conditions
journal, February 2014

  • Paz-Soldan, C.; Eidietis, N. W.; Granetz, R.
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4866912

Theory for avalanche of runaway electrons in tokamaks
journal, October 1997


Disruptions in ITER and strategies for their control and mitigation
journal, August 2015


Runaway relativistic electron avalanche seeding in the Earth's atmosphere: RREA SEEDING
journal, October 2008

  • Carlson, B. E.; Lehtinen, N. G.; Inan, U. S.
  • Journal of Geophysical Research: Space Physics, Vol. 113, Issue A10
  • DOI: 10.1029/2008JA013210

Resonant diffusion of radiation belt electrons by whistler-mode chorus
journal, January 2003


Relativistic limitations on runaway electrons
journal, June 1975


Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss
journal, November 2008

  • Shprits, Yuri Y.; Subbotin, Dmitriy A.; Meredith, Nigel P.
  • Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 70, Issue 14
  • DOI: 10.1016/j.jastp.2008.06.014

Electron and Ion Runaway in a Fully Ionized Gas. II
journal, January 1960


Three-dimensional test simulations of the outer radiation belt electron dynamics including electron-chorus resonant interactions: RADIATION BELT ELECTRON DYNAMICS
journal, December 2008

  • Varotsou, Athina; Boscher, Daniel; Bourdarie, Sebastien
  • Journal of Geophysical Research: Space Physics, Vol. 113, Issue A12
  • DOI: 10.1029/2007JA012862

Stability analysis of runaway-driven waves in a tokamak
journal, March 2015


All-orders spectral calculation of radio-frequency heating in two-dimensional toroidal plasmas
journal, May 2001

  • Jaeger, E. F.; Berry, L. A.; D’Azevedo, E.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1359516

Momentum–space structure of relativistic runaway electrons
journal, June 1998

  • Martı́n-Solı́s, J. R.; Alvarez, J. D.; Sánchez, R.
  • Physics of Plasmas, Vol. 5, Issue 6
  • DOI: 10.1063/1.872911

Direct Detection of Resonant Electron Pitch Angle Scattering by Whistler Waves in a Laboratory Plasma
journal, April 2014


The runaway electron discharge regime in the Tokamak-6 device
journal, August 1973


Earth currents
journal, January 1956


Earth Currents
journal, October 1872


Earth currents
journal, January 1873


Works referencing / citing this record:

Laboratory space physics: Investigating the physics of space plasmas in the laboratory
journal, May 2018


Radio frequency measurements of energetic-particle-driven emission using the ion cyclotron emission diagnostic on the DIII-D tokamak
journal, October 2018

  • Thome, K. E.; Pace, D. C.; Pinsker, R. I.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5035561

Emission of diamonds, leucosapphire, and KU-1 quartz in the range of 200–800 nm excited by electron beams with a pulse duration of 0.5 and 12 ns
journal, June 2019

  • Tarasenko, V. F.; Oleshko, V. I.; Erofeev, M. V.
  • Journal of Applied Physics, Vol. 125, Issue 24
  • DOI: 10.1063/1.5094956

Low-frequency whistler waves in quiescent runaway electron plasmas
journal, November 2018

  • Heidbrink, W. W.; Paz-Soldan, C.; Spong, D. A.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
  • DOI: 10.1088/1361-6587/aae2da

The role of kinetic instabilities in formation of the runaway electron current after argon injection in DIII-D
journal, November 2018

  • Lvovskiy, A.; Paz-Soldan, C.; Eidietis, N. W.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 12
  • DOI: 10.1088/1361-6587/aae95a

The effect of resonant magnetic perturbation on the electron density threshold of runaway electron generation during disruptions on J-TEXT
journal, December 2019

  • Lin, Z. F.; Tong, R. H.; Chen, Z. Y.
  • Plasma Physics and Controlled Fusion, Vol. 62, Issue 2
  • DOI: 10.1088/1361-6587/ab5b34

Conservative magnetic moment of runaway electrons and collisionless pitch-angle scattering
journal, August 2018


DIII-D research towards establishing the scientific basis for future fusion reactors
journal, June 2019


Physics of runaway electrons in tokamaks
journal, June 2019

  • Breizman, Boris N.; Aleynikov, Pavel; Hollmann, Eric M.
  • Nuclear Fusion, Vol. 59, Issue 8
  • DOI: 10.1088/1741-4326/ab1822

MARS-F modeling of post-disruption runaway beam loss by magnetohydrodynamic instabilities in DIII-D
journal, October 2019


Observation of rapid frequency chirping instabilities driven by runaway electrons in a tokamak
journal, September 2019