DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tuning mobility and stability of lithium ion conductors based on lattice dynamics

Abstract

Lithium ion conductivity in many structural families can be tuned by many orders of magnitude, with some rivaling that of liquid electrolytes at room temperature. Unfortunately, fast lithium conductors exhibit poor stability against lithium battery electrodes. In this article, we report a fundamentally new approach to alter ion mobility and stability against oxidation of lithium ion conductors using lattice dynamics. By combining inelastic neutron scattering measurements with density functional theory, fast lithium conductors were shown to have low lithium vibration frequency or low center of lithium phonon density of states. On the other hand, lowering anion phonon densities of states reduces the stability against electrochemical oxidation. Olivines with low lithium band centers but high anion band centers are promising lithium ion conductors with high ion conductivity and stability. Such findings highlight new strategies in controlling lattice dynamics to discover new lithium ion conductors with enhanced conductivity and stability.

Authors:
 [1];  [2]; ORCiD logo [3];  [4]; ORCiD logo [5];  [5];  [6];  [7];  [7]; ORCiD logo [8];  [8];  [8]; ORCiD logo [9]
  1. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, USA
  2. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, USA
  3. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, USA, Dipartimento di Scienza dei Materiali
  4. Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, USA
  5. Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, USA
  6. Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, USA, Mechanical Engineering and Materials Science
  7. Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Midori, Japan
  8. Research Battery Technology, BMW Group, Munich 80788, Germany
  9. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, USA, Department of Mechanical Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Univ. of California, Oakland, CA (United States); Duke Univ., Durham, NC (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1493940
Alternate Identifier(s):
OSTI ID: 1543789
Grant/Contract Number:  
SC0016166; AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Name: Energy & Environmental Science Journal Volume: 11 Journal Issue: 4; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English
Subject:
25 ENERGY STORAGE; Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology

Citation Formats

Muy, Sokseiha, Bachman, John C., Giordano, Livia, Chang, Hao-Hsun, Abernathy, Douglas L., Bansal, Dipanshu, Delaire, Olivier, Hori, Satoshi, Kanno, Ryoji, Maglia, Filippo, Lupart, Saskia, Lamp, Peter, and Shao-Horn, Yang. Tuning mobility and stability of lithium ion conductors based on lattice dynamics. United Kingdom: N. p., 2018. Web. doi:10.1039/C7EE03364H.
Muy, Sokseiha, Bachman, John C., Giordano, Livia, Chang, Hao-Hsun, Abernathy, Douglas L., Bansal, Dipanshu, Delaire, Olivier, Hori, Satoshi, Kanno, Ryoji, Maglia, Filippo, Lupart, Saskia, Lamp, Peter, & Shao-Horn, Yang. Tuning mobility and stability of lithium ion conductors based on lattice dynamics. United Kingdom. https://doi.org/10.1039/C7EE03364H
Muy, Sokseiha, Bachman, John C., Giordano, Livia, Chang, Hao-Hsun, Abernathy, Douglas L., Bansal, Dipanshu, Delaire, Olivier, Hori, Satoshi, Kanno, Ryoji, Maglia, Filippo, Lupart, Saskia, Lamp, Peter, and Shao-Horn, Yang. Wed . "Tuning mobility and stability of lithium ion conductors based on lattice dynamics". United Kingdom. https://doi.org/10.1039/C7EE03364H.
@article{osti_1493940,
title = {Tuning mobility and stability of lithium ion conductors based on lattice dynamics},
author = {Muy, Sokseiha and Bachman, John C. and Giordano, Livia and Chang, Hao-Hsun and Abernathy, Douglas L. and Bansal, Dipanshu and Delaire, Olivier and Hori, Satoshi and Kanno, Ryoji and Maglia, Filippo and Lupart, Saskia and Lamp, Peter and Shao-Horn, Yang},
abstractNote = {Lithium ion conductivity in many structural families can be tuned by many orders of magnitude, with some rivaling that of liquid electrolytes at room temperature. Unfortunately, fast lithium conductors exhibit poor stability against lithium battery electrodes. In this article, we report a fundamentally new approach to alter ion mobility and stability against oxidation of lithium ion conductors using lattice dynamics. By combining inelastic neutron scattering measurements with density functional theory, fast lithium conductors were shown to have low lithium vibration frequency or low center of lithium phonon density of states. On the other hand, lowering anion phonon densities of states reduces the stability against electrochemical oxidation. Olivines with low lithium band centers but high anion band centers are promising lithium ion conductors with high ion conductivity and stability. Such findings highlight new strategies in controlling lattice dynamics to discover new lithium ion conductors with enhanced conductivity and stability.},
doi = {10.1039/C7EE03364H},
journal = {Energy & Environmental Science},
number = 4,
volume = 11,
place = {United Kingdom},
year = {Wed Apr 18 00:00:00 EDT 2018},
month = {Wed Apr 18 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1039/C7EE03364H

Citation Metrics:
Cited by: 115 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
journal, January 2014

  • Seino, Yoshikatsu; Ota, Tsuyoshi; Takada, Kazunori
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE41655K

Projector augmented-wave method
journal, December 1994


Far-infrared, microwave, and inelastic neutron scattering experiments of the superionic conductor α -AgI
journal, July 1980


Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution
journal, September 2013

  • Grimaud, Alexis; May, Kevin J.; Carlton, Christopher E.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3439

Influence of Lattice Dynamics on Na + Transport in the Solid Electrolyte Na 3 PS 4– x Se x
journal, October 2017


Interface Stability of Argyrodite Li 6 PS 5 Cl toward LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , and LiMn 2 O 4 in Bulk All-Solid-State Batteries
journal, April 2017


Li 10 SnP 2 S 12 : An Affordable Lithium Superionic Conductor
journal, October 2013

  • Bron, Philipp; Johansson, Sebastian; Zick, Klaus
  • Journal of the American Chemical Society, Vol. 135, Issue 42
  • DOI: 10.1021/ja407393y

Lattice Dynamics To Trigger Low Temperature Oxygen Mobility in Solid Oxide Ion Conductors
journal, November 2008

  • Paulus, Werner; Schober, Helmut; Eibl, Stefan
  • Journal of the American Chemical Society, Vol. 130, Issue 47
  • DOI: 10.1021/ja806144a

On the correlation between self-diffusion and the low-frequency LA ⅔⟨111⟩ phonon mode in b.c.c. metals
journal, November 1988


Air-stable, high-conduction solid electrolytes of arsenic-substituted Li 4 SnS 4
journal, January 2014

  • Sahu, Gayatri; Lin, Zhan; Li, Juchuan
  • Energy Environ. Sci., Vol. 7, Issue 3
  • DOI: 10.1039/C3EE43357A

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Multivariate Method-Assisted Ab Initio Study of Olivine-Type LiMXO 4 (Main Group M 2+ –X 5+ and M 3+ –X 4+ ) Compositions as Potential Solid Electrolytes
journal, March 2012

  • Jalem, Randy; Aoyama, Takahiro; Nakayama, Masanobu
  • Chemistry of Materials, Vol. 24, Issue 7
  • DOI: 10.1021/cm3000427

Particle Size Dependence of the Ionic Diffusivity
journal, October 2010

  • Malik, Rahul; Burch, Damian; Bazant, Martin
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl1023595

Rational Composition Optimization of the Lithium-Rich Li 3 OCl 1– x Br x Anti-Perovskite Superionic Conductors
journal, May 2015


Mechanisms of Li + diffusion in crystalline γ - and β Li 3 P O 4 electrolytes from first principles
journal, November 2007


The high-throughput highway to computational materials design
journal, February 2013

  • Curtarolo, Stefano; Hart, Gus L. W.; Nardelli, Marco Buongiorno
  • Nature Materials, Vol. 12, Issue 3
  • DOI: 10.1038/nmat3568

High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


Origin of fast ion diffusion in super-ionic conductors
journal, June 2017

  • He, Xingfeng; Zhu, Yizhou; Mo, Yifei
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15893

Effects of O vacancies and N or Si substitutions on Li + migration in Li 3 PO 4 electrolytes from first principles
journal, November 2008


Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries
journal, January 2016

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • Journal of Materials Chemistry A, Vol. 4, Issue 9
  • DOI: 10.1039/C5TA08574H

Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li 6 PS 5 X (X = Cl, Br, I)
journal, July 2017

  • Kraft, Marvin A.; Culver, Sean P.; Calderon, Mario
  • Journal of the American Chemical Society, Vol. 139, Issue 31
  • DOI: 10.1021/jacs.7b06327

Phonon anharmonicity and negative thermal expansion in SnSe
journal, August 2016


Factors controlling oxygen migration barriers in perovskites
journal, November 2016


All-solid-state secondary lithium battery using solid polymer electrolyte and anthraquinone cathode
journal, February 2017


Size Effects on Carbon-Free LiFePO[sub 4] Powders
journal, January 2006

  • Delacourt, C.; Poizot, P.; Levasseur, S.
  • Electrochemical and Solid-State Letters, Vol. 9, Issue 7
  • DOI: 10.1149/1.2201987

Electrochemical Stability of Li 10 GeP 2 S 12 and Li 7 La 3 Zr 2 O 12 Solid Electrolytes
journal, January 2016

  • Han, Fudong; Zhu, Yizhou; He, Xingfeng
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201501590

Lithium Ionic Conductor Thio-LISICON: The Li2S-GeS2-P2S5 System
journal, January 2001

  • Kanno, Ryoji; Murayama, Masahiro
  • Journal of The Electrochemical Society, Vol. 148, Issue 7, p. A742-A746
  • DOI: 10.1149/1.1379028

Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li 4 SiO 4 –Li 3 PO 4 Solid Electrolytes
journal, July 2015

  • Deng, Yue; Eames, Christopher; Chotard, Jean-Noël
  • Journal of the American Chemical Society, Vol. 137, Issue 28
  • DOI: 10.1021/jacs.5b04444

Lithium-excess olivine electrode for lithium rechargeable batteries
journal, January 2016

  • Park, Kyu-Young; Park, Inchul; Kim, Hyungsub
  • Energy & Environmental Science, Vol. 9, Issue 9
  • DOI: 10.1039/C6EE01266C

Ionic Conductivity of Lithium Orthosilicate—Lithium Phosphate Solid Solutions
journal, January 1977

  • Hu, Y. -W.
  • Journal of The Electrochemical Society, Vol. 124, Issue 8
  • DOI: 10.1149/1.2133537

Enhancement of Ionic Transport in Complex Oxides through Soft Lattice Modes and Epitaxial Strain
journal, March 2015


Lattice Dynamics Modified by Excess Oxygen in Nd 2 NiO 4+δ : Triggering Low-Temperature Oxygen Diffusion
journal, January 2015

  • Perrichon, A.; Piovano, A.; Boehm, M.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 3
  • DOI: 10.1021/jp510392h

Design principles for solid-state lithium superionic conductors
journal, August 2015

  • Wang, Yan; Richards, William Davidson; Ong, Shyue Ping
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4369

How Chemical Composition Alone Can Predict Vibrational Free Energies and Entropies of Solids
journal, July 2017


Ionic Conductivity of Li4SiO4, Li4GeO4, and Their Solid Solutions
journal, July 1976


A solid future for battery development
journal, September 2016


Li Conductivity in Li[sub x]MPO[sub 4] (M = Mn, Fe, Co, Ni) Olivine Materials
journal, January 2004

  • Morgan, D.; Van der Ven, A.; Ceder, G.
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 2
  • DOI: 10.1149/1.1633511

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


First principles phonon calculations in materials science
journal, November 2015


Can artificial intelligence create the next wonder material?
journal, May 2016


Ionic and electronic conductivity in some alkali vanadates
journal, February 2004


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) Solid Electrolytes through a Mixed Polyanion Effect
journal, February 2017

  • Deng, Yue; Eames, Christopher; Fleutot, Benoit
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 8
  • DOI: 10.1021/acsami.6b14402

Lattice dynamics of the superionic conductor AgI
journal, October 1977


Data-Driven First-Principles Methods for the Study and Design of Alkali Superionic Conductors
journal, September 2016


Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4
journal, November 1984


Roles of phonon amplitude and low-energy optical phonons on superionic conduction
journal, November 1997


SrTiO 3 and BaTiO 3 revisited using the projector augmented wave method: Performance of hybrid and semilocal functionals
journal, September 2008


Relationship between Activation Energy and Bottleneck Size for Li + Ion Conduction in NASICON Materials of Composition LiMM‘(PO 4 ) 3 ; M, M‘ = Ge, Ti, Sn, Hf
journal, January 1998

  • Martínez-Juárez, Ana; Pecharromán, Carlos; Iglesias, Juan E.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 2
  • DOI: 10.1021/jp973296c

Garnet-type solid-state fast Li ion conductors for Li batteries: critical review
journal, January 2014

  • Thangadurai, Venkataraman; Narayanan, Sumaletha; Pinzaru, Dana
  • Chemical Society Reviews, Vol. 43, Issue 13
  • DOI: 10.1039/c4cs00020j

Interface Stability in Solid-State Batteries
journal, December 2015


Atomistic calculations and materials informatics: A review
journal, June 2017


Computational Identification and Experimental Realization of Lithium Vacancy Introduction into the Olivine LiMgPO 4
journal, March 2015

  • Enciso-Maldonado, Leopoldo; Dyer, Matthew S.; Jones, Michael D.
  • Chemistry of Materials, Vol. 27, Issue 6
  • DOI: 10.1021/cm504518q

Copper ion liquid-like thermoelectrics
journal, March 2012

  • Liu, Huili; Shi, Xun; Xu, Fangfang
  • Nature Materials, Vol. 11, Issue 5, p. 422-425
  • DOI: 10.1038/nmat3273

Lithium Lanthanum Titanates:  A Review
journal, October 2003

  • Stramare, S.; Thangadurai, V.; Weppner, W.
  • Chemistry of Materials, Vol. 15, Issue 21
  • DOI: 10.1021/cm0300516

Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013


Works referencing / citing this record:

Lithium diffusion in L i 2 X ( X = O , S, and Se): Ab initio simulations and inelastic neutron scattering measurements
journal, June 2019


A New Lithium‐Ion Conductor LiTaSiO 5 : Theoretical Prediction, Materials Synthesis, and Ionic Conductivity
journal, July 2019

  • Wang, Qi; Wu, Jian‐Fang; Lu, Ziheng
  • Advanced Functional Materials, Vol. 29, Issue 37
  • DOI: 10.1002/adfm.201904232

Sulfide Solid Electrolytes for Lithium Battery Applications
journal, August 2018

  • Lau, Jonathan; DeBlock, Ryan H.; Butts, Danielle M.
  • Advanced Energy Materials, Vol. 8, Issue 27
  • DOI: 10.1002/aenm.201800933

Revealing the Short‐Circuiting Mechanism of Garnet‐Based Solid‐State Electrolyte
journal, April 2019

  • Song, Yongli; Yang, Luyi; Zhao, Wenguang
  • Advanced Energy Materials, Vol. 9, Issue 21
  • DOI: 10.1002/aenm.201900671

A Lithium Oxythioborosilicate Solid Electrolyte Glass with Superionic Conductivity
journal, January 2020

  • Kaup, Kavish; Bazak, J. David; Vajargah, Shahrzad Hosseini
  • Advanced Energy Materials, Vol. 10, Issue 8
  • DOI: 10.1002/aenm.201902783

Emerging Electron Microscopy Techniques for Probing Functional Interfaces in Energy Materials
journal, October 2019

  • Zachman, Michael J.; Hachtel, Jordan A.; Idrobo, Juan Carlos
  • Angewandte Chemie, Vol. 132, Issue 4
  • DOI: 10.1002/ange.201902993

Unsupervised discovery of solid-state lithium ion conductors
journal, November 2019


Fundamentals of inorganic solid-state electrolytes for batteries
journal, August 2019

  • Famprikis, Theodosios; Canepa, Pieremanuele; Dawson, James A.
  • Nature Materials, Vol. 18, Issue 12
  • DOI: 10.1038/s41563-019-0431-3

Understanding interface stability in solid-state batteries
journal, December 2019


Designing solid-state electrolytes for safe, energy-dense batteries
journal, February 2020


Highly efficient evaluation of diffusion networks in Li ionic conductors using a 3D-corrugation descriptor
journal, October 2019


Near ideal synaptic functionalities in Li ion synaptic transistor using Li3POxSex electrolyte with high ionic conductivity
journal, December 2019


Bond valences and anharmonicity in vacancy-ordered double perovskite halides
journal, January 2018

  • Maughan, Annalise E.; Paecklar, Arnold A.; Neilson, James R.
  • Journal of Materials Chemistry C, Vol. 6, Issue 44
  • DOI: 10.1039/c8tc03527j

High-throughput computational screening for solid-state Li-ion conductors
journal, January 2020

  • Kahle, Leonid; Marcolongo, Aris; Marzari, Nicola
  • Energy & Environmental Science, Vol. 13, Issue 3
  • DOI: 10.1039/c9ee02457c

Anharmonic lattice dynamics and superionic transition in AgCrSe 2
journal, February 2020

  • Ding, Jingxuan; Niedziela, Jennifer L.; Bansal, Dipanshu
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 8
  • DOI: 10.1073/pnas.1913916117