DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Novel ALD Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes

Abstract

Lithium metal anodes can largely enhance the energy density of rechargeable batteries because of the high theoretical capacity and the high negative potential. However, the problem of lithium dendrite formation and low Coulombic efficiency (CE) during electrochemical cycling must be solved before lithium anodes can be widely deployed. Herein, a new atomic layer deposition (ALD) chemistry to realize the low-temperature synthesis of homogeneous and stoichiometric lithium fluoride (LiF) is reported, which then for the first time, as far as we know, is deposited directly onto lithium metal. The LiF preparation is performed at 150 degrees C yielding 0.8 angstrom/cycle. The LiF films are found to be crystalline, highly conformal, and stoichiometric with purity levels >99%. Nanoindentation measurements demonstrate the LiF achieving a shear modulus of 58 GPa, 7 times higher than the sufficient value to resist lithium dendrites. When used as the protective coating on lithium, it enables a stable Coulombic efficiency as high as 99.5% for over 170 cycles, about 4 times longer than that of bare lithium anodes. The remarkable battery performance is attributed to the nanosized LiF that serves two critical functions simultaneously: (1) the high dielectric value creates a uniform current distribution for excellent lithium stripping/platingmore » and ultrahigh mechanical strength to suppress lithium dendrites; (2) the great stability and electrolyte isolation by the pure LiF on lithium prevents parasitic reactions for a much improved CE. This new ALD chemistry for conformal LiF not only offers a promising avenue to implement lithium metal anodes for high-capacity batteries but also paves the way for future studies to investigate failure and evolution mechanisms of solid electrolyte interphase (SEI) using our LiF on anodes such as graphite, silicon, and lithium.« less

Authors:
 [1];  [2];  [2];  [3];  [4];  [5];  [6];  [1];  [4]; ORCiD logo [6]; ORCiD logo [2]; ORCiD logo [1]
  1. Argonne National Lab. (ANL), Lemont, IL (United States)
  2. Northwestern Univ., Evanston, IL (United States)
  3. Argonne National Lab. (ANL), Lemont, IL (United States); Bruker Nano Surfaces, San Jose, CA (United States)
  4. Univ. of Illinois at Chicago, Chicago, IL (United States)
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Electrical Energy Storage (CEES); SLAC National Accelerator Lab., Menlo Park, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1476140
Alternate Identifier(s):
OSTI ID: 1493895
Grant/Contract Number:  
AC02-76SF00515; 1620901; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 10; Journal Issue: 32; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; atomic layer deposition; high shear modulus; lithium fluoride; lithium metal anode; new chemistry

Citation Formats

Chen, Lin, Chen, Kan -Sheng, Chen, Xinjie, Ramirez, Giovanni, Huang, Zhennan, Geise, Natalie R., Steinrück, Hans -Georg, Fisher, Brandon L., Shahbazian-Yassar, Reza, Toney, Michael F., Hersam, Mark C., and Elam, Jeffrey W. Novel ALD Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes. United States: N. p., 2018. Web. doi:10.1021/acsami.8b04573.
Chen, Lin, Chen, Kan -Sheng, Chen, Xinjie, Ramirez, Giovanni, Huang, Zhennan, Geise, Natalie R., Steinrück, Hans -Georg, Fisher, Brandon L., Shahbazian-Yassar, Reza, Toney, Michael F., Hersam, Mark C., & Elam, Jeffrey W. Novel ALD Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes. United States. https://doi.org/10.1021/acsami.8b04573
Chen, Lin, Chen, Kan -Sheng, Chen, Xinjie, Ramirez, Giovanni, Huang, Zhennan, Geise, Natalie R., Steinrück, Hans -Georg, Fisher, Brandon L., Shahbazian-Yassar, Reza, Toney, Michael F., Hersam, Mark C., and Elam, Jeffrey W. Mon . "Novel ALD Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes". United States. https://doi.org/10.1021/acsami.8b04573. https://www.osti.gov/servlets/purl/1476140.
@article{osti_1476140,
title = {Novel ALD Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes},
author = {Chen, Lin and Chen, Kan -Sheng and Chen, Xinjie and Ramirez, Giovanni and Huang, Zhennan and Geise, Natalie R. and Steinrück, Hans -Georg and Fisher, Brandon L. and Shahbazian-Yassar, Reza and Toney, Michael F. and Hersam, Mark C. and Elam, Jeffrey W.},
abstractNote = {Lithium metal anodes can largely enhance the energy density of rechargeable batteries because of the high theoretical capacity and the high negative potential. However, the problem of lithium dendrite formation and low Coulombic efficiency (CE) during electrochemical cycling must be solved before lithium anodes can be widely deployed. Herein, a new atomic layer deposition (ALD) chemistry to realize the low-temperature synthesis of homogeneous and stoichiometric lithium fluoride (LiF) is reported, which then for the first time, as far as we know, is deposited directly onto lithium metal. The LiF preparation is performed at 150 degrees C yielding 0.8 angstrom/cycle. The LiF films are found to be crystalline, highly conformal, and stoichiometric with purity levels >99%. Nanoindentation measurements demonstrate the LiF achieving a shear modulus of 58 GPa, 7 times higher than the sufficient value to resist lithium dendrites. When used as the protective coating on lithium, it enables a stable Coulombic efficiency as high as 99.5% for over 170 cycles, about 4 times longer than that of bare lithium anodes. The remarkable battery performance is attributed to the nanosized LiF that serves two critical functions simultaneously: (1) the high dielectric value creates a uniform current distribution for excellent lithium stripping/plating and ultrahigh mechanical strength to suppress lithium dendrites; (2) the great stability and electrolyte isolation by the pure LiF on lithium prevents parasitic reactions for a much improved CE. This new ALD chemistry for conformal LiF not only offers a promising avenue to implement lithium metal anodes for high-capacity batteries but also paves the way for future studies to investigate failure and evolution mechanisms of solid electrolyte interphase (SEI) using our LiF on anodes such as graphite, silicon, and lithium.},
doi = {10.1021/acsami.8b04573},
journal = {ACS Applied Materials and Interfaces},
number = 32,
volume = 10,
place = {United States},
year = {Mon Jul 09 00:00:00 EDT 2018},
month = {Mon Jul 09 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 74 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Synthesis schematic for ALD LiF using LiOtBu and HF/ pyridine. (b) In situ QCM measurements during LiF ALD. (c) Ellipsometric thickness measurements of LiF films deposited on silicon substrates. (d) TEM image of SiO2 nanospheres dispersed on carbon TEM grid and subsequently coated using 15 nm LiF.more » (e) Selected area electron diffraction of 15 nm LiF coating. (f) AFM of 60 nm LiF on silicon.« less

Save / Share:

Works referenced in this record:

Ultra-Uniform SnO x /Carbon Nanohybrids toward Advanced Lithium-Ion Battery Anodes
journal, March 2014


Towards greener and more sustainable batteries for electrical energy storage
journal, November 2014


Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure
journal, November 2014

  • Zhang, Yaohui; Qian, Jiangfeng; Xu, Wu
  • Nano Letters, Vol. 14, Issue 12
  • DOI: 10.1021/nl5039117

A Review of Solid Electrolyte Interphases on Lithium Metal Anode
journal, November 2015


New insights into the electrode mechanism of lithium sulfur batteries via air-free post-test analysis
journal, January 2016

  • Chen, Lin; Dietz Rago, Nancy L.; Bloom, Ira D.
  • Chemical Communications, Vol. 52, Issue 64
  • DOI: 10.1039/C6CC04401H

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Lithium metal protected by atomic layer deposition metal oxide for high performance anodes
journal, January 2017

  • Chen, Lin; Connell, Justin G.; Nie, Anmin
  • Journal of Materials Chemistry A, Vol. 5, Issue 24
  • DOI: 10.1039/C7TA03116E

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Defect-induced plating of lithium metal within porous graphene networks
journal, April 2014

  • Mukherjee, Rahul; Thomas, Abhay V.; Datta, Dibakar
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4710

Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries
journal, May 2014

  • Khurana, Rachna; Schaefer, Jennifer L.; Archer, Lynden A.
  • Journal of the American Chemical Society, Vol. 136, Issue 20
  • DOI: 10.1021/ja502133j

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Towards High-Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy
journal, July 2016


Stable Artificial Solid Electrolyte Interphases for Lithium Batteries
journal, May 2017


Long lifespan lithium metal anodes enabled by Al2O3 sputter coating
journal, January 2018


Poly(ethyl α-cyanoacrylate)-Based Artificial Solid Electrolyte Interphase Layer for Enhanced Interface Stability of Li Metal Anodes
journal, May 2017


An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes
journal, December 2016

  • Liu, Yayuan; Lin, Dingchang; Yuen, Pak Yan
  • Advanced Materials, Vol. 29, Issue 10
  • DOI: 10.1002/adma.201605531

The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Elastic Properties of the Solid Electrolyte Li 7 La 3 Zr 2 O 12 (LLZO)
journal, December 2015


A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
journal, March 2013

  • Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3602

Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes
journal, February 2015

  • Lu, Yingying; Tikekar, Mukul; Mohanty, Ritesh
  • Advanced Energy Materials, Vol. 5, Issue 9
  • DOI: 10.1002/aenm.201402073

Phosphorous Pentasulfide as a Novel Additive for High-Performance Lithium-Sulfur Batteries
journal, June 2012

  • Lin, Zhan; Liu, Zengcai; Fu, Wujun
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200696

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition
journal, May 2015


Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments
journal, September 2015


Atomic Layer Deposition of Li x Al y S Solid-State Electrolytes for Stabilizing Lithium-Metal Anodes
journal, April 2016


ALD for clean energy conversion, utilization, and storage
journal, November 2011

  • Elam, Jeffrey W.; Dasgupta, Neil P.; Prinz, Fritz B.
  • MRS Bulletin, Vol. 36, Issue 11, p. 899-906
  • DOI: 10.1557/mrs.2011.265

Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies
journal, July 2001


Interface Stability in Solid-State Batteries
journal, December 2015


Mechanical and Thermal Properties of Certain Optical Crystalline Materials*
journal, January 1951

  • Combes, Lewis S.; Ballard, Stanley S.; McCarthy, Kathryn A.
  • Journal of the Optical Society of America, Vol. 41, Issue 4
  • DOI: 10.1364/JOSA.41.000215

Dendrite Growth in Lithium/Polymer Systems
journal, January 2003

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 150, Issue 10
  • DOI: 10.1149/1.1606686

Atomic Layer Deposition of LiF Thin Films from Lithd and TiF 4 Precursors
journal, May 2013

  • Mäntymäki, Miia; Hämäläinen, Jani; Puukilainen, Esa
  • Chemical Vapor Deposition, Vol. 19, Issue 4-6
  • DOI: 10.1002/cvde.201207026

Atomic Layer Deposition of LiF Thin Films from Lithd, Mg(thd) 2 , and TiF 4 Precursors
journal, April 2013

  • Mäntymäki, Miia; Hämäläinen, Jani; Puukilainen, Esa
  • Chemistry of Materials, Vol. 25, Issue 9
  • DOI: 10.1021/cm400046w

Atomic Layer Deposition of Stable LiAlF 4 Lithium Ion Conductive Interfacial Layer for Stable Cathode Cycling
journal, July 2017


Mixing Behavior in Small Molecule:Fullerene Organic Photovoltaics
journal, March 2017


Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon
journal, May 2017


Atomic Layer Deposition of Metal Fluorides Using HF–Pyridine as the Fluorine Precursor
journal, March 2016


Synthesis and characterization of nano- and microcrystalline cubes of pure and Ag-doped LiF
journal, December 2012


Enhanced electrochemical properties of a LiNiO 2 -based cathode material by removing lithium residues with (NH 4 ) 2 HPO 4
journal, January 2014

  • Xiong, Xunhui; Ding, Dong; Bu, Yunfei
  • J. Mater. Chem. A, Vol. 2, Issue 30
  • DOI: 10.1039/C4TA01282H

Influence of Electrolyte Modulus on the Local Current Density at a Dendrite Tip on a Lithium Metal Electrode
journal, January 2016

  • Harry, Katherine J.; Higa, Kenneth; Srinivasan, Venkat
  • Journal of The Electrochemical Society, Vol. 163, Issue 10
  • DOI: 10.1149/2.0191610jes

Tribochemistry of Carbon Films in Oxygen and Humid Environments: Oxidative Wear and Galvanic Corrosion
journal, February 2016


What is the Young's Modulus of Silicon?
journal, April 2010

  • Hopcroft, Matthew A.; Nix, William D.; Kenny, Thomas W.
  • Journal of Microelectromechanical Systems, Vol. 19, Issue 2
  • DOI: 10.1109/JMEMS.2009.2039697

A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries
journal, June 2015


Attainable Gravimetric and Volumetric Energy Density of Li–S and Li Ion Battery Cells with Solid Separator-Protected Li Metal Anodes
journal, October 2015


Defect Chemistry: Composition, Transport, and Reactions in the Solid State; Part I: Thermodynamics
journal, March 1993

  • Maier, Joachim
  • Angewandte Chemie International Edition in English, Vol. 32, Issue 3
  • DOI: 10.1002/anie.199303133

Lithium transport through lithium-ion battery cathode coatings
journal, January 2015

  • Xu, Shenzhen; Jacobs, Ryan M.; Nguyen, Ha M.
  • Journal of Materials Chemistry A, Vol. 3, Issue 33
  • DOI: 10.1039/C5TA01664A

Influence of OH− ions on infrared absorption and ionic conductivity in lithium fluoride crystals
journal, August 1967


First-Principles Analysis of Defect Thermodynamics and Ion Transport in Inorganic SEI Compounds: LiF and NaF
journal, August 2015

  • Yildirim, Handan; Kinaci, Alper; Chan, Maria K. Y.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 34
  • DOI: 10.1021/acsami.5b02904

Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode
journal, September 2014

  • Yan, Kai; Lee, Hyun-Wook; Gao, Teng
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl503125u

Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries
journal, February 2016

  • Cheng, Xin-Bing; Hou, Ting-Zheng; Zhang, Rui
  • Advanced Materials, Vol. 28, Issue 15
  • DOI: 10.1002/adma.201506124

Lithium Metal Anodes with an Adaptive “Solid-Liquid” Interfacial Protective Layer
journal, March 2017

  • Liu, Kai; Pei, Allen; Lee, Hye Ryoung
  • Journal of the American Chemical Society, Vol. 139, Issue 13
  • DOI: 10.1021/jacs.6b13314

Works referencing / citing this record:

In situ formation of a LiF and Li–Al alloy anode protected layer on a Li metal anode with enhanced cycle life
journal, January 2020

  • Wang, Lili; Fu, Shiyang; Zhao, Teng
  • Journal of Materials Chemistry A, Vol. 8, Issue 3
  • DOI: 10.1039/c9ta10965j

Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries
journal, March 2019


The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium
journal, December 2019

  • He, Mingfu; Guo, Rui; Hobold, Gustavo M.
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 1
  • DOI: 10.1073/pnas.1911017116

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.