skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improved Cycling Performance of Li-Excess Cation-Disordered Cathode Materials upon Fluorine Substitution

Abstract

We report the recent discovery of Li-excess cation-disordered rock salt cathodes has greatly enlarged the design space of Li-ion cathode materials. Evidence of facile lattice fluorine substitution for oxygen has further provided an important strategy to enhance the cycling performance of this class of materials. Here, a group of Mn3+–Nb5+-based cation-disordered oxyfluorides, Li1.2Mn3+0.6+0.5xNb5+0.2-0.5xO2-xFx (x = 0, 0.05, 0.1, 0.15, 0.2) is investigated and it is found that fluorination improves capacity retention in a very significant way. Combining spectroscopic methods and ab initio calculations, it is demonstrated that the increased transition-metal redox (Mn3+/Mn4+) capacity that can be accommodated upon fluorination reduces reliance on oxygen redox and leads to less oxygen loss, as evidenced by differential electrochemical mass spectroscopy measurements. Furthermore, it is found that fluorine substitution also decreases the Mn3+-induced Jahn–Teller distortion, leading to an orbital rearrangement that further increases the contribution of Mn-redox capacity to the overall capacity.

Authors:
 [1];  [1];  [2];  [3];  [4];  [5];  [3];  [4];  [1];  [6];  [3]; ORCiD logo [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  4. Univ. of California, Berkeley, CA (United States)
  5. Argonne National Lab. (ANL), Argonne, IL (United States)
  6. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE Office of Science (SC), Basic Energy Sciences (BES); Robert Bosch GmbH; Umicore
OSTI Identifier:
1493873
Alternate Identifier(s):
OSTI ID: 1482427
Grant/Contract Number:  
AC02-06CH11357; AC02‐05CH11231; AC02-05CH11231; NSF DMR 1720256
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 9; Journal Issue: 2; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; cyclability; DFT; fluorination; Jahn–Teller distortion; Li‐excess cation‐disordered cathodes

Citation Formats

Lun, Zhengyan, Ouyang, Bin, Kitchaev, Daniil A., Clément, Raphaële J., Papp, Joseph K., Balasubramanian, Mahalingam, Tian, Yaosen, Lei, Teng, Shi, Tan, McCloskey, Bryan D., Lee, Jinhyuk, and Ceder, Gerbrand. Improved Cycling Performance of Li-Excess Cation-Disordered Cathode Materials upon Fluorine Substitution. United States: N. p., 2018. Web. doi:10.1002/aenm.201802959.
Lun, Zhengyan, Ouyang, Bin, Kitchaev, Daniil A., Clément, Raphaële J., Papp, Joseph K., Balasubramanian, Mahalingam, Tian, Yaosen, Lei, Teng, Shi, Tan, McCloskey, Bryan D., Lee, Jinhyuk, & Ceder, Gerbrand. Improved Cycling Performance of Li-Excess Cation-Disordered Cathode Materials upon Fluorine Substitution. United States. doi:10.1002/aenm.201802959.
Lun, Zhengyan, Ouyang, Bin, Kitchaev, Daniil A., Clément, Raphaële J., Papp, Joseph K., Balasubramanian, Mahalingam, Tian, Yaosen, Lei, Teng, Shi, Tan, McCloskey, Bryan D., Lee, Jinhyuk, and Ceder, Gerbrand. Fri . "Improved Cycling Performance of Li-Excess Cation-Disordered Cathode Materials upon Fluorine Substitution". United States. doi:10.1002/aenm.201802959. https://www.osti.gov/servlets/purl/1493873.
@article{osti_1493873,
title = {Improved Cycling Performance of Li-Excess Cation-Disordered Cathode Materials upon Fluorine Substitution},
author = {Lun, Zhengyan and Ouyang, Bin and Kitchaev, Daniil A. and Clément, Raphaële J. and Papp, Joseph K. and Balasubramanian, Mahalingam and Tian, Yaosen and Lei, Teng and Shi, Tan and McCloskey, Bryan D. and Lee, Jinhyuk and Ceder, Gerbrand},
abstractNote = {We report the recent discovery of Li-excess cation-disordered rock salt cathodes has greatly enlarged the design space of Li-ion cathode materials. Evidence of facile lattice fluorine substitution for oxygen has further provided an important strategy to enhance the cycling performance of this class of materials. Here, a group of Mn3+–Nb5+-based cation-disordered oxyfluorides, Li1.2Mn3+0.6+0.5xNb5+0.2-0.5xO2-xFx (x = 0, 0.05, 0.1, 0.15, 0.2) is investigated and it is found that fluorination improves capacity retention in a very significant way. Combining spectroscopic methods and ab initio calculations, it is demonstrated that the increased transition-metal redox (Mn3+/Mn4+) capacity that can be accommodated upon fluorination reduces reliance on oxygen redox and leads to less oxygen loss, as evidenced by differential electrochemical mass spectroscopy measurements. Furthermore, it is found that fluorine substitution also decreases the Mn3+-induced Jahn–Teller distortion, leading to an orbital rearrangement that further increases the contribution of Mn-redox capacity to the overall capacity.},
doi = {10.1002/aenm.201802959},
journal = {Advanced Energy Materials},
number = 2,
volume = 9,
place = {United States},
year = {2018},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Characterization of Different Precursors and Activated Vanadium Phosphate Catalysis by 31P NMR Spin Echo Mapping
journal, July 1994

  • Sananes, M. T.; Tuel, A.; Hutchings, G. J.
  • Journal of Catalysis, Vol. 148, Issue 1
  • DOI: 10.1006/jcat.1994.1221

Characterization of Disordered Li (1+ x ) Ti 2 x Fe (1–3 x ) O 2 as Positive Electrode Materials in Li-Ion Batteries Using Percolation Theory
journal, November 2015


Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials
journal, April 2018


Reversible Three-Electron Redox Reaction of Mo 3+ /Mo 6+ for Rechargeable Lithium Batteries
journal, March 2017


The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials
journal, May 2016

  • Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2524

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries
journal, January 2014


Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O 2 Batteries
journal, March 2012

  • McCloskey, B. D.; Speidel, A.; Scheffler, R.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
  • DOI: 10.1021/jz300243r

Frequency-stepped acquisition in nuclear magnetic resonance spectroscopy under magic angle spinning
journal, March 2013

  • Pell, Andrew J.; Clément, Raphaële J.; Grey, Clare P.
  • The Journal of Chemical Physics, Vol. 138, Issue 11
  • DOI: 10.1063/1.4795001

71Ga and 69Ga nuclear magnetic resonance study of β-Ga2O3: resolution of four- and six-fold coordinated Ga sites in static conditions
journal, May 1995

  • Massiot, Dominique; Farnan, Ian; Gautier, Nathalie
  • Solid State Nuclear Magnetic Resonance, Vol. 4, Issue 4
  • DOI: 10.1016/0926-2040(95)00002-8

In Situ XAFS Analysis of Li(Mn, M)2O4 (M=Cr, Co, Ni) 5V Cathode Materials for Lithium-Ion Secondary Batteries
journal, February 2001

  • Terada, Yasuko; Yasaka, Kenji; Nishikawa, Fumishige
  • Journal of Solid State Chemistry, Vol. 156, Issue 2
  • DOI: 10.1006/jssc.2000.8990

Design principles for high transition metal capacity in disordered rocksalt Li-ion cathodes
journal, January 2018

  • Kitchaev, Daniil A.; Lun, Zhengyan; Richards, William D.
  • Energy & Environmental Science, Vol. 11, Issue 8
  • DOI: 10.1039/C8EE00816G

First-principles investigation of the cooperative Jahn-Teller effect for octahedrally coordinated transition-metal ions
journal, May 2001


Energetics of MnO 2 polymorphs in density functional theory
journal, January 2016


Synthesis of “Li[sub 1.1](Ni[sub 0.425]Mn[sub 0.425]Co[sub 0.15])[sub 0.9]O[sub 1.8]F[sub 0.2]” Materials by Different Routes: Is There Fluorine Substitution for Oxygen?
journal, January 2009

  • Croguennec, L.; Bains, J.; Ménétrier, M.
  • Journal of The Electrochemical Society, Vol. 156, Issue 5
  • DOI: 10.1149/1.3080659

Disordered Lithium-Rich Oxyfluoride as a Stable Host for Enhanced Li + Intercalation Storage
journal, February 2015

  • Chen, Ruiyong; Ren, Shuhua; Knapp, Michael
  • Advanced Energy Materials, Vol. 5, Issue 9
  • DOI: 10.1002/aenm.201401814

Residual Lithium Carbonate Predominantly Accounts for First Cycle CO 2 and CO Outgassing of Li-Stoichiometric and Li-Rich Layered Transition-Metal Oxides
journal, November 2017

  • Renfrew, Sara E.; McCloskey, Bryan D.
  • Journal of the American Chemical Society, Vol. 139, Issue 49
  • DOI: 10.1021/jacs.7b08461

Electronic-Structure Origin of Cation Disorder in Transition-Metal Oxides
journal, October 2017


Equation of State Calculations by Fast Computing Machines
journal, June 1953

  • Metropolis, Nicholas; Rosenbluth, Arianna W.; Rosenbluth, Marshall N.
  • The Journal of Chemical Physics, Vol. 21, Issue 6
  • DOI: 10.1063/1.1699114

High-capacity electrode materials for rechargeable lithium batteries: Li 3 NbO 4 -based system with cation-disordered rocksalt structure
journal, June 2015

  • Yabuuchi, Naoaki; Takeuchi, Mitsue; Nakayama, Masanobu
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 25
  • DOI: 10.1073/pnas.1504901112

X-ray Absorption Spectroscopy Investigation of Lithium-Rich, Cobalt-Poor Layered-Oxide Cathode Material with High Capacity
journal, November 2014


Ab initio and experimental pre-edge investigations of the Mn K -edge XANES in oxide-type materials
journal, April 2005


The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides
journal, January 2015

  • Lee, Jinhyuk; Seo, Dong-Hwa; Balasubramanian, Mahalingam
  • Energy & Environmental Science, Vol. 8, Issue 11
  • DOI: 10.1039/C5EE02329G

Acquisition of ultra-wideline NMR spectra from quadrupolar nuclei by frequency stepped WURST–QCPMG
journal, January 2009


Monte Carlo sampling methods using Markov chains and their applications
journal, April 1970


Strongly Constrained and Appropriately Normed Semilocal Density Functional
journal, July 2015


Designing New Lithium-Excess Cathode Materials from Percolation Theory: Nanohighways in Li x Ni 2–4 x /3 Sb x /3 O 2
journal, December 2014

  • Twu, Nancy; Li, Xin; Urban, Alexander
  • Nano Letters, Vol. 15, Issue 1
  • DOI: 10.1021/nl5040754

Efficient first-principles prediction of solid stability: Towards chemical accuracy
journal, March 2018


Ten years left to redesign lithium-ion batteries
journal, July 2018


Compressive sensing as a paradigm for building physics models
journal, January 2013


Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials
journal, October 2017


High-Performance Low-Temperature Li + Intercalation in Disordered Rock-Salt Li-Cr-V Oxyfluorides
journal, April 2016


Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges
journal, January 2015

  • Rozier, Patrick; Tarascon, Jean Marie
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0111514jes

Short-Range Order and Unusual Modes of Nickel Redox in a Fluorine-Substituted Disordered Rocksalt Oxide Lithium-Ion Cathode
journal, September 2018


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


On the Efficacy of Electrocatalysis in Nonaqueous Li–O 2 Batteries
journal, November 2011

  • McCloskey, Bryan D.; Scheffler, Rouven; Speidel, Angela
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja207229n

Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox
journal, January 2018

  • House, Robert A.; Jin, Liyu; Maitra, Urmimala
  • Energy & Environmental Science, Vol. 11, Issue 4
  • DOI: 10.1039/C7EE03195E

Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries
journal, February 2006

  • Kang, Kisuk; Shirley Meng, Ying; Breger, Julien
  • Science, Vol. 311, Issue 5763, p. 977-980
  • DOI: 10.1126/science.1122152

In Situ X-ray Absorption Spectroscopic Study on LiNi 0.5 Mn 0.5 O 2 Cathode Material during Electrochemical Cycling
journal, August 2003

  • Yoon, Won-Sub; Grey, Clare P.; Balasubramanian, Mahalingam
  • Chemistry of Materials, Vol. 15, Issue 16
  • DOI: 10.1021/cm030220m

Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

Fluorination of Lithium-Excess Transition Metal Oxide Cathode Materials
journal, October 2017

  • Richards, William D.; Dacek, Stephen T.; Kitchaev, Daniil A.
  • Advanced Energy Materials, Vol. 8, Issue 5
  • DOI: 10.1002/aenm.201701533

Operando X-ray Absorption Study of the Redox Processes Involved upon Cycling of the Li-Rich Layered Oxide Li 1.20 Mn 0.54 Co 0.13 Ni 0.13 O 2 in Li Ion Batteries
journal, March 2014

  • Koga, H.; Croguennec, L.; Ménétrier, M.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 11
  • DOI: 10.1021/jp412197z

Design of Li 1+2x Zn 1−x PS 4 , a new lithium ion conductor
journal, January 2016

  • Richards, William D.; Wang, Yan; Miara, Lincoln J.
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE02094A

NMR evidence of LiF coating rather than fluorine substitution in Li(Ni0.425Mn0.425Co0.15)O2
journal, December 2008


The Configurational Space of Rocksalt-Type Oxides for High-Capacity Lithium Battery Electrodes
journal, May 2014

  • Urban, Alexander; Lee, Jinhyuk; Ceder, Gerbrand
  • Advanced Energy Materials, Vol. 4, Issue 13
  • DOI: 10.1002/aenm.201400478

Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals
journal, October 2017


Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries
journal, December 2016

  • Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13814

Oxidation energies of transition metal oxides within the GGA + U framework
journal, May 2006


Layered Li[Ni[sub x]Co[sub 1−2x]Mn[sub x]]O[sub 2] Cathode Materials for Lithium-Ion Batteries
journal, January 2001

  • Lu, Zhonghua; MacNeil, D. D.; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 12
  • DOI: 10.1149/1.1413182

Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry
journal, May 2011

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 10, p. 1161-1166
  • DOI: 10.1021/jz200352v