skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Qresp, a tool for curating, discovering and exploring reproducible scientific papers

Abstract

We propose a strategy and present a simple tool to facilitate scientific data reproducibility by making available, in a distributed manner, all data and procedures presented in scientific papers, together with metadata to render them searchable and discoverable. In particular, we describe a graphical user interface (GUI), Qresp, to curate papers (i.e. generate metadata) and to explore curated papers and automatically access the data presented in scientific publications.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2];  [2];  [2];  [2];  [1];  [1]
  1. Argonne National Lab. (ANL), Lemont, IL (United States); Univ. of Chicago, IL (United States)
  2. Univ. of Chicago, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; Midwest Integrated Center for Computational Materials (MICCoM)
OSTI Identifier:
1493732
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Data
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2052-4463
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
99 GENERAL AND MISCELLANEOUS; 96 KNOWLEDGE MANAGEMENT AND PRESERVATION

Citation Formats

Govoni, Marco, Munakami, Milson, Tanikanti, Aditya, Skone, Jonathan H., Runesha, Hakizumwami B., Giberti, Federico, de Pablo, Juan, and Galli, Giulia. Qresp, a tool for curating, discovering and exploring reproducible scientific papers. United States: N. p., 2019. Web. doi:10.1038/sdata.2019.2.
Govoni, Marco, Munakami, Milson, Tanikanti, Aditya, Skone, Jonathan H., Runesha, Hakizumwami B., Giberti, Federico, de Pablo, Juan, & Galli, Giulia. Qresp, a tool for curating, discovering and exploring reproducible scientific papers. United States. doi:10.1038/sdata.2019.2.
Govoni, Marco, Munakami, Milson, Tanikanti, Aditya, Skone, Jonathan H., Runesha, Hakizumwami B., Giberti, Federico, de Pablo, Juan, and Galli, Giulia. Tue . "Qresp, a tool for curating, discovering and exploring reproducible scientific papers". United States. doi:10.1038/sdata.2019.2. https://www.osti.gov/servlets/purl/1493732.
@article{osti_1493732,
title = {Qresp, a tool for curating, discovering and exploring reproducible scientific papers},
author = {Govoni, Marco and Munakami, Milson and Tanikanti, Aditya and Skone, Jonathan H. and Runesha, Hakizumwami B. and Giberti, Federico and de Pablo, Juan and Galli, Giulia},
abstractNote = {We propose a strategy and present a simple tool to facilitate scientific data reproducibility by making available, in a distributed manner, all data and procedures presented in scientific papers, together with metadata to render them searchable and discoverable. In particular, we describe a graphical user interface (GUI), Qresp, to curate papers (i.e. generate metadata) and to explore curated papers and automatically access the data presented in scientific publications.},
doi = {10.1038/sdata.2019.2},
journal = {Scientific Data},
number = ,
volume = 6,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Summary of Qresp capabilities. Organization of data used and generated in a scientific paper (Organizer: see also Fig. 2); curation of data (Curator: see also Fig. 2) and exploration of papers (Explorer; see also Figs 3 and 4).

Save / Share:

Works referenced in this record:

Simple data and workflow management with the signac framework
journal, April 2018


Deep learning
journal, May 2015

  • LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey
  • Nature, Vol. 521, Issue 7553
  • DOI: 10.1038/nature14539

Making the most of materials computations
journal, October 2016


Strategy for Extensible, Evolving Terminology for the Materials Genome Initiative Efforts
journal, July 2015


FireWorks: a dynamic workflow system designed for high-throughput applications: FireWorks: A Dynamic Workflow System Designed for High-Throughput Applications
journal, May 2015

  • Jain, Anubhav; Ong, Shyue Ping; Chen, Wei
  • Concurrency and Computation: Practice and Experience, Vol. 27, Issue 17
  • DOI: 10.1002/cpe.3505

1,500 scientists lift the lid on reproducibility
journal, May 2016


Materials Informatics: The Materials “Gene” and Big Data
journal, July 2015


How quality control could save your science
journal, January 2016


What does research reproducibility mean?
journal, June 2016

  • Goodman, Steven N.; Fanelli, Daniele; Ioannidis, John P. A.
  • Science Translational Medicine, Vol. 8, Issue 341
  • DOI: 10.1126/scitranslmed.aaf5027

How scientists fool themselves – and how they can stop
journal, October 2015


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Interactive notebooks: Sharing the code
journal, November 2014


AiiDA: automated interactive infrastructure and database for computational science
journal, January 2016


Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
journal, September 2013


Research Update: The materials genome initiative: Data sharing and the impact of collaborative ab initio databases
journal, March 2016

  • Jain, Anubhav; Persson, Kristin A.; Ceder, Gerbrand
  • APL Materials, Vol. 4, Issue 5
  • DOI: 10.1063/1.4944683

Science and data science
journal, August 2017

  • Blei, David M.; Smyth, Padhraic
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 33
  • DOI: 10.1073/pnas.1702076114

AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
journal, June 2012


Reproducibility: A tragedy of errors
journal, February 2016

  • Allison, David B.; Brown, Andrew W.; George, Brandon J.
  • Nature, Vol. 530, Issue 7588
  • DOI: 10.1038/530027a

Software as a service for data scientists
journal, February 2012

  • Allen, Bryce; Pickett, Karl; Tuecke, Steven
  • Communications of the ACM, Vol. 55, Issue 2
  • DOI: 10.1145/2076450.2076468

Materials Data Science: Current Status and Future Outlook
journal, July 2015


Enhancing reproducibility for computational methods
journal, December 2016


Realizing the potential of data science
journal, March 2018

  • Berman, Francine; Stodden, Victoria; Szalay, Alexander S.
  • Communications of the ACM, Vol. 61, Issue 4
  • DOI: 10.1145/3188721

The Materials Data Facility: Data Services to Advance Materials Science Research
journal, July 2016


The Modern Research Data Portal: a design pattern for networked, data-intensive science
journal, January 2018


Facilitating the Reproducibility of Scientific Workflows with Execution Environment Specifications
journal, January 2017


Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences
journal, January 2010


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.