skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Negative longitudinal magnetoresistance in gallium arsenide quantum wells

Abstract

Negative longitudinal magnetoresistances (NLMRs) have been recently observed in a variety of topological materials and often considered to be associated with Weyl fermions that have a defined chirality. Here we report NLMRs in non-Weyl GaAs quantum wells. In the absence of a magnetic field the quantum wells show a transition from semiconducting-like to metallic behaviour with decreasing temperature. We observe pronounced NLMRs up to 9 Tesla at temperatures above the transition and weak NLMRs in low magnetic fields at temperatures close to the transition and below 5 K. The observed NLMRs show various types of magnetic field behaviour resembling those reported in topological materials. We attribute them to microscopic disorder and use a phenomenological three-resistor model to account for their various features. Our results showcase a contribution of microscopic disorder in the occurrence of unusual phenomena. They may stimulate further work on tuning electronic properties via disorder/defect nano-engineering.

Authors:
 [1];  [2];  [3]; ORCiD logo [1];  [4];  [5];  [4];  [6];  [2];  [2];  [2];  [2];  [5]
  1. Argonne National Lab. (ANL), Argonne, IL (United States); Northern Illinois Univ., DeKalb, IL (United States)
  2. Princeton Univ., NJ (United States)
  3. Northern Illinois Univ., DeKalb, IL (United States)
  4. Argonne National Lab. (ANL), Argonne, IL (United States); Nanjing Univ. (China)
  5. Argonne National Lab. (ANL), Argonne, IL (United States)
  6. Argonne National Lab. (ANL), Argonne, IL (United States); Oakland Univ., Rochester, MI (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; Gordon and Betty Moore Foundation; Fulbright Program; National Science Foundation (NSF)
OSTI Identifier:
1493719
Grant/Contract Number:  
AC02-06CH11357; FG02-00ER45841
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Xu, Jing, Ma, Meng K., Sultanov, Maksim, Xiao, Zhi-Li, Wang, Yong-Lei, Jin, Dafei, Lyu, Yang-Yang, Zhang, Wei, Pfeiffer, Loren N., West, Ken W., Baldwin, Kirk W., Shayegan, Mansour, and Kwok, Wai-Kwong. Negative longitudinal magnetoresistance in gallium arsenide quantum wells. United States: N. p., 2019. Web. doi:10.1038/s41467-018-08199-2.
Xu, Jing, Ma, Meng K., Sultanov, Maksim, Xiao, Zhi-Li, Wang, Yong-Lei, Jin, Dafei, Lyu, Yang-Yang, Zhang, Wei, Pfeiffer, Loren N., West, Ken W., Baldwin, Kirk W., Shayegan, Mansour, & Kwok, Wai-Kwong. Negative longitudinal magnetoresistance in gallium arsenide quantum wells. United States. doi:10.1038/s41467-018-08199-2.
Xu, Jing, Ma, Meng K., Sultanov, Maksim, Xiao, Zhi-Li, Wang, Yong-Lei, Jin, Dafei, Lyu, Yang-Yang, Zhang, Wei, Pfeiffer, Loren N., West, Ken W., Baldwin, Kirk W., Shayegan, Mansour, and Kwok, Wai-Kwong. Thu . "Negative longitudinal magnetoresistance in gallium arsenide quantum wells". United States. doi:10.1038/s41467-018-08199-2. https://www.osti.gov/servlets/purl/1493719.
@article{osti_1493719,
title = {Negative longitudinal magnetoresistance in gallium arsenide quantum wells},
author = {Xu, Jing and Ma, Meng K. and Sultanov, Maksim and Xiao, Zhi-Li and Wang, Yong-Lei and Jin, Dafei and Lyu, Yang-Yang and Zhang, Wei and Pfeiffer, Loren N. and West, Ken W. and Baldwin, Kirk W. and Shayegan, Mansour and Kwok, Wai-Kwong},
abstractNote = {Negative longitudinal magnetoresistances (NLMRs) have been recently observed in a variety of topological materials and often considered to be associated with Weyl fermions that have a defined chirality. Here we report NLMRs in non-Weyl GaAs quantum wells. In the absence of a magnetic field the quantum wells show a transition from semiconducting-like to metallic behaviour with decreasing temperature. We observe pronounced NLMRs up to 9 Tesla at temperatures above the transition and weak NLMRs in low magnetic fields at temperatures close to the transition and below 5 K. The observed NLMRs show various types of magnetic field behaviour resembling those reported in topological materials. We attribute them to microscopic disorder and use a phenomenological three-resistor model to account for their various features. Our results showcase a contribution of microscopic disorder in the occurrence of unusual phenomena. They may stimulate further work on tuning electronic properties via disorder/defect nano-engineering.},
doi = {10.1038/s41467-018-08199-2},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Fig. 1 Fig. 1: Negative longitudinal magnetoresistance in GaAs quantum well. a Micrograph of the sample in Hall bar geometry with width of Ly= 50 µm and voltage lead distance of Lx= 100 µm. b Schematic showing the definition of the angle θ between the magnetic field B and the direction ofmore » the current I, with θ= 0° for B//I and θ= 90° for B⊥I. c Magnetic field dependence of the resistance Rxx(B) at various field orientations. Negative magnetoresistance can be clearly seen at θ≤ 6°. d Temperature dependence of the magnetoresistance (MR) at magnetic fields from B= 0.5 to 9.0 T at intervals of 0.5 T at B//I, where MR= [R(B)− R0]/R0, with R0 being the longitudinal resistance Rxx at zero field. e Representative R(B) curves showing evolution of the MR feature with temperature. The chosen temperatures are given in the corresponding panels and also marked in d. In e, symbols are experimental data; green lines are fits to the data at T= 133 and 3 K using Eq. 2 with values of the five variables of εd= 0.727, γd= 0.295, α= 0.148 T−2, βs= 6.83 × 10-4 T−2 and βp= 0.12 T−2 and εd= 0.818, γd= 0.21, α= 20 T−2, βs= 0.016 T−2 and βp= 35 T−2, respectively; red lines (for T= 250, 150 and 138 K) are fits with the reduced form of Eq. 2 for the serial scenario, with fitting parameters presented in Fig. 4, and the magenta line (for T= 70 K) describes a quadratic magnetic field dependence R(B)= R0 (1+ βB2), with β= 1.4 × 10−3 T−2 and the measured R0= 543.4Ω« less

Save / Share:

Works referenced in this record:

Colossal negative magnetoresistance in a two-dimensional electron gas
journal, May 2014


Integral quantum Hall effect for nonspecialists
journal, July 1987


Weak Localization in Bilayer Graphene
journal, April 2007


Magnetoresistance in Two-Component Systems
journal, April 2015


Dirac versus Weyl Fermions in Topological Insulators: Adler-Bell-Jackiw Anomaly in Transport Phenomena
journal, December 2013


Linear Magnetoresistance Caused by Mobility Fluctuations in n -Doped Cd 3 As 2
journal, March 2015


Longitudinal Negative Magnetoresistance and Magnetotransport Phenomena in Conventional and Topological Conductors
journal, January 2018


Large, non-saturating magnetoresistance in WTe2
journal, September 2014

  • Ali, Mazhar N.; Xiong, Jun; Flynn, Steven
  • Nature, Vol. 514, Issue 7521
  • DOI: 10.1038/nature13763

Anisotropic and strong negative magnetoresistance in the three-dimensional topological insulator Bi 2 Se 3
journal, August 2016


Gigantic negative magnetoresistance in the bulk of a disordered topological insulator
journal, May 2017

  • Breunig, Oliver; Wang, Zhiwei; Taskin, A. A.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15545

Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP
journal, July 2017

  • Gooth, Johannes; Niemann, Anna C.; Meng, Tobias
  • Nature, Vol. 547, Issue 7663
  • DOI: 10.1038/nature23005

Current Jets, Disorder, and Linear Magnetoresistance in the Silver Chalcogenides
journal, October 2005


Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal
journal, February 2016

  • Zhang, Cheng-Long; Xu, Su-Yang; Belopolski, Ilya
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10735

Negative Magnetoresistance without Chiral Anomaly in Topological Insulators
journal, October 2017


GMR applications
journal, February 1999


Nonsaturating magnetoresistance of inhomogeneous conductors: Comparison of experiment and simulation
journal, June 2007


Possible origin of linear magnetoresistance: Observation of Dirac surface states in layered PtBi 2
journal, January 2018


Intrinsic relative magnetoconductivity of nonmagnetic metals
journal, April 2017


Doping- and irradiation-controlled pinning of vortices in BaFe 2 (As 1 x P x ) 2 single crystals
journal, October 2011


Strong Magnetoresistance Induced by Long-Range Disorder
journal, October 1999


On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance
journal, August 2016


Spin splitting and weak localization in (110) GaAs/ Al x Ga 1 x As quantum wells
journal, April 1997


Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2
journal, November 2014

  • Liang, Tian; Gibson, Quinn; Ali, Mazhar N.
  • Nature Materials, Vol. 14, Issue 3
  • DOI: 10.1038/nmat4143

Aharonov–Bohm oscillations in Dirac semimetal Cd3As2 nanowires
journal, February 2016

  • Wang, Li-Xian; Li, Cai-Zhen; Yu, Da-Peng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10769

Evidence for the chiral anomaly in the Dirac semimetal Na3Bi
journal, September 2015


Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP
journal, May 2016

  • Arnold, Frank; Shekhar, Chandra; Wu, Shu-Chun
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11615

Resistivity plateau and extreme magnetoresistance in LaSb
journal, December 2015

  • Tafti, F. F.; Gibson, Q. D.; Kushwaha, S. K.
  • Nature Physics, Vol. 12, Issue 3
  • DOI: 10.1038/nphys3581

Chiral anomaly and ultrahigh mobility in crystalline HfT e 5
journal, April 2016


Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2
journal, October 2016

  • Wang, Yaojia; Liu, Erfu; Liu, Huimei
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13142

Negative magnetoresistance due to conductivity fluctuations in films of the topological semimetal C d 3 A s 2
journal, June 2017


Experimental Observation of Anisotropic Adler-Bell-Jackiw Anomaly in Type-II Weyl Semimetal WTe 1.98 Crystals at the Quasiclassical Regime
journal, March 2017


Anisotropic magnetotransport and exotic longitudinal linear magnetoresistance in WT e 2 crystals
journal, July 2015


Quantum corrections to conductivity: From weak to strong localization
journal, June 2002


Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP
journal, June 2015

  • Shekhar, Chandra; Nayak, Ajaya K.; Sun, Yan
  • Nature Physics, Vol. 11, Issue 8
  • DOI: 10.1038/nphys3372

Negative longitudinal magnetoresistance in Dirac and Weyl metals
journal, June 2015


Negative Longitudinal Magnetoresistance in the Density Wave Phase of Y 2 Ir 2 O 7
journal, February 2018


Classical and quantum routes to linear magnetoresistance
journal, September 2008

  • Hu, Jingshi; Rosenbaum, T. F.
  • Nature Materials, Vol. 7, Issue 9
  • DOI: 10.1038/nmat2259

Separation of electron and hole dynamics in the semimetal LaSb
journal, September 2017


Axial anomaly and longitudinal magnetoresistance of a generic three-dimensional metal
journal, August 2015


Evidence for topological type-II Weyl semimetal WTe2
journal, December 2017


Linear magnetoresistance in metals: Guiding center diffusion in a smooth random potential
journal, November 2015


Chiral anomaly and classical negative magnetoresistance of Weyl metals
journal, September 2013


The effect of aluminum composition on silicon donor behavior in AlxGa1−xAs
journal, January 1984

  • Salmon, L. G.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 2, Issue 2
  • DOI: 10.1116/1.582778

Chiral magnetic effect in ZrTe5
journal, February 2016

  • Li, Qiang; Kharzeev, Dmitri E.; Zhang, Cheng
  • Nature Physics, Vol. 12, Issue 6
  • DOI: 10.1038/nphys3648

Defects controlled hole doping and multivalley transport in SnSe single crystals
journal, January 2018


The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi
journal, June 2016

  • Hirschberger, Max; Kushwaha, Satya; Wang, Zhijun
  • Nature Materials, Vol. 15, Issue 11
  • DOI: 10.1038/nmat4684

Non-saturating magnetoresistance in heavily disordered semiconductors
journal, November 2003


Linear Magnetoresistance in a Quasifree Two-Dimensional Electron Gas in an Ultrahigh Mobility GaAs Quantum Well
journal, December 2016


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.