DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In Situ Measurement of the Plane-Strain Modulus of the Solid Electrolyte Interphase on Lithium-Metal Anodes in Ionic Liquid Electrolytes

Abstract

In this paper, we present an experimental approach for in situ measurement of elastic modulus of the solid electrolyte interphase (SEI), which is formed from reactions between a lithium thin-film [on a polydimethylsiloxane (PDMS) substrate] and a room-temperature ionic liquid (RTIL) electrolyte. The SEI forms under a state of compressive stress, which causes buckling of the sample surface. In situ atomic force microscopy is used to measure the dominant wavelength of the wrinkled surface topography. A mechanics analysis of strain-induced elastic buckling instability of a stiff thin film on a soft substrate is used to determine the plane strain modulus of the SEI from the measured wavelength. The measurements are performed for three RTIL electrolytes: 1-butyl 1-methylpiperidinium bis(trifluoromethylsulfonyl)imide (P14 TFSI) without any lithium salt, 1.0 M lithium bis(trifluoromethylsulfonyl)imide (Li TFSI) in P14 TFSI, and 1.0 M lithium bis(fluorosulfonyl)imide (Li FSI) in P14 TFSI to investigate the influence of lithium salts on the plane strain modulus of the SEI. The measurements yield plane-strain moduli of approximately 1.3 GPa for no-salt P14 TFSI and approximately 1.6 GPa for 1.0 M Li TFSI in P14 TFSI and 1.0 M Li FSI in P14 TFSI. Finally, the experimental technique presented here eliminates some ofmore » the uncertainties associated with traditional SEI mechanical characterization approaches and offers a platform to engineer an SEI with desired mechanical properties by approaches that include altering the electrolyte composition.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [2];  [1]
  1. Brown Univ., Providence, RI (United States)
  2. Univ. of Rhode Island, Kingston, RI (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Experimental Program to Stimulate Competitive Research (EPSCoR)
OSTI Identifier:
1493711
Grant/Contract Number:  
AC02-06CH11357; SC0007074
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 18; Journal Issue: 9; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; atomic force microscopy; elastic modulus; ionic liquid electrolytes; lithium metal anodes; solid electrolyte interphase

Citation Formats

Yoon, Insun, Jurng, Sunhyung, Abraham, Daniel P., Lucht, Brett L., and Guduru, Pradeep R. In Situ Measurement of the Plane-Strain Modulus of the Solid Electrolyte Interphase on Lithium-Metal Anodes in Ionic Liquid Electrolytes. United States: N. p., 2018. Web. doi:10.1021/acs.nanolett.8b02363.
Yoon, Insun, Jurng, Sunhyung, Abraham, Daniel P., Lucht, Brett L., & Guduru, Pradeep R. In Situ Measurement of the Plane-Strain Modulus of the Solid Electrolyte Interphase on Lithium-Metal Anodes in Ionic Liquid Electrolytes. United States. https://doi.org/10.1021/acs.nanolett.8b02363
Yoon, Insun, Jurng, Sunhyung, Abraham, Daniel P., Lucht, Brett L., and Guduru, Pradeep R. Mon . "In Situ Measurement of the Plane-Strain Modulus of the Solid Electrolyte Interphase on Lithium-Metal Anodes in Ionic Liquid Electrolytes". United States. https://doi.org/10.1021/acs.nanolett.8b02363. https://www.osti.gov/servlets/purl/1493711.
@article{osti_1493711,
title = {In Situ Measurement of the Plane-Strain Modulus of the Solid Electrolyte Interphase on Lithium-Metal Anodes in Ionic Liquid Electrolytes},
author = {Yoon, Insun and Jurng, Sunhyung and Abraham, Daniel P. and Lucht, Brett L. and Guduru, Pradeep R.},
abstractNote = {In this paper, we present an experimental approach for in situ measurement of elastic modulus of the solid electrolyte interphase (SEI), which is formed from reactions between a lithium thin-film [on a polydimethylsiloxane (PDMS) substrate] and a room-temperature ionic liquid (RTIL) electrolyte. The SEI forms under a state of compressive stress, which causes buckling of the sample surface. In situ atomic force microscopy is used to measure the dominant wavelength of the wrinkled surface topography. A mechanics analysis of strain-induced elastic buckling instability of a stiff thin film on a soft substrate is used to determine the plane strain modulus of the SEI from the measured wavelength. The measurements are performed for three RTIL electrolytes: 1-butyl 1-methylpiperidinium bis(trifluoromethylsulfonyl)imide (P14 TFSI) without any lithium salt, 1.0 M lithium bis(trifluoromethylsulfonyl)imide (Li TFSI) in P14 TFSI, and 1.0 M lithium bis(fluorosulfonyl)imide (Li FSI) in P14 TFSI to investigate the influence of lithium salts on the plane strain modulus of the SEI. The measurements yield plane-strain moduli of approximately 1.3 GPa for no-salt P14 TFSI and approximately 1.6 GPa for 1.0 M Li TFSI in P14 TFSI and 1.0 M Li FSI in P14 TFSI. Finally, the experimental technique presented here eliminates some of the uncertainties associated with traditional SEI mechanical characterization approaches and offers a platform to engineer an SEI with desired mechanical properties by approaches that include altering the electrolyte composition.},
doi = {10.1021/acs.nanolett.8b02363},
journal = {Nano Letters},
number = 9,
volume = 18,
place = {United States},
year = {Mon Aug 13 00:00:00 EDT 2018},
month = {Mon Aug 13 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 33 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

History of lithium batteries
journal, May 2011


The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

History, Evolution, and Future Status of Energy Storage
journal, May 2012


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Historical development of secondary lithium batteries
journal, August 1994


Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

III. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid
journal, January 1901

  • Sand, Henry J. S.
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 1, Issue 1
  • DOI: 10.1080/14786440109462590

Electrochemical aspects of the generation of ramified metallic electrodeposits
journal, December 1990


Onset of dendritic growth in lithium/polymer cells
journal, July 2001


The Role of Sei in Lithium and Lithium Ion Batteries
journal, January 1995


Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes
journal, January 1997

  • Peled, E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 8
  • DOI: 10.1149/1.1837858

Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF 6 and Cyclic Carbonate Additives
journal, November 2017


The behaviour of lithium electrodes in propylene and ethylene carbonate: Te major factors that influence Li cycling efficiency
journal, November 1992

  • Aurbach, Doron; Gofer, Yosef; Ben-Zion, Moshe
  • Journal of Electroanalytical Chemistry, Vol. 339, Issue 1-2
  • DOI: 10.1016/0022-0728(92)80467-I

Effect of water on the kinetics of the solid lithium-lithium ion reaction in propylene carbonate
journal, November 1969

  • Butler, James N.; Cogley, David R.; Synnott, John C.
  • The Journal of Physical Chemistry, Vol. 73, Issue 11
  • DOI: 10.1021/j100845a082

Structural and Functional Analysis of Surface Film on Li Anode in Vinylene Carbonate-Containing Electrolyte
journal, January 2004

  • Ota, Hitoshi; Sakata, Yuuichi; Otake, Yumiko
  • Journal of The Electrochemical Society, Vol. 151, Issue 11
  • DOI: 10.1149/1.1798411

Protection of lithium metal surfaces using tetraethoxysilane
journal, January 2011

  • Umeda, Grant A.; Menke, Erik; Richard, Monique
  • J. Mater. Chem., Vol. 21, Issue 5
  • DOI: 10.1039/C0JM02305A

Protection of Lithium Metal Surfaces Using Chlorosilanes
journal, November 2007

  • Marchioni, Filippo; Star, Kurt; Menke, Erik
  • Langmuir, Vol. 23, Issue 23
  • DOI: 10.1021/la701662r

Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries
journal, October 2011


A Critical Review of Li∕Air Batteries
journal, January 2012

  • Christensen, Jake; Albertus, Paul; Sanchez-Carrera, Roel S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 2, p. R1-R30
  • DOI: 10.1149/2.086202jes

Making Li-Air Batteries Rechargeable: Material Challenges
journal, May 2012

  • Shao, Yuyan; Ding, Fei; Xiao, Jie
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200688

Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries
journal, July 2001


Controlled Lithium Dendrite Growth by a Synergistic Effect of Multilayered Graphene Coating and an Electrolyte Additive
journal, April 2015

  • Kim, Joo-Seong; Kim, Dae Woo; Jung, Hee Tae
  • Chemistry of Materials, Vol. 27, Issue 8
  • DOI: 10.1021/cm503447u

Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode
journal, September 2014

  • Yan, Kai; Lee, Hyun-Wook; Gao, Teng
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl503125u

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries
journal, January 2012

  • Stone, G. M.; Mullin, S. A.; Teran, A. A.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.030203jes

Lithium Metal Anodes with an Adaptive “Solid-Liquid” Interfacial Protective Layer
journal, March 2017

  • Liu, Kai; Pei, Allen; Lee, Hye Ryoung
  • Journal of the American Chemical Society, Vol. 139, Issue 13
  • DOI: 10.1021/jacs.6b13314

Lithium Ionic Conductor Thio-LISICON: The Li2S-GeS2-P2S5 System
journal, January 2001

  • Kanno, Ryoji; Murayama, Masahiro
  • Journal of The Electrochemical Society, Vol. 148, Issue 7, p. A742-A746
  • DOI: 10.1149/1.1379028

Preparation of Li2S-P2S5 Amorphous Solid Electrolytes by Mechanical Milling
journal, February 2001


High ionic conductivity in lithium lanthanum titanate
journal, June 1993

  • Inaguma, Yoshiyuki; Liquan, Chen; Itoh, Mitsuru
  • Solid State Communications, Vol. 86, Issue 10, p. 689-693
  • DOI: 10.1016/0038-1098(93)90841-A

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Ionic conductivity in Li 3 N single crystals
journal, June 1977

  • Alpen, U. v.; Rabenau, A.; Talat, G. H.
  • Applied Physics Letters, Vol. 30, Issue 12
  • DOI: 10.1063/1.89283

Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition
journal, May 2015


Atomic Layer Deposition of Li x Al y S Solid-State Electrolytes for Stabilizing Lithium-Metal Anodes
journal, April 2016


A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries
journal, June 2015


Direct Observation of Inhomogeneous Solid Electrolyte Interphase on MnO Anode with Atomic Force Microscopy and Spectroscopy
journal, January 2012

  • Zhang, Jie; Wang, Rui; Yang, Xiaocheng
  • Nano Letters, Vol. 12, Issue 4
  • DOI: 10.1021/nl300570d

Determination of mechanical properties of the SEI in sodium ion batteries via colloidal probe microscopy
journal, September 2013


Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells
journal, November 2004


Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries
journal, June 2010


The Application of Atomic Force Microscopy for the Study of Li Deposition Processes
journal, January 1996

  • Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 143, Issue 11
  • DOI: 10.1149/1.1837248

Morphological Studies of Li Deposition Processes in LiAsF[sub 6]∕PC Solutions by In Situ Atomic Force Microscopy
journal, January 1997

  • Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 144, Issue 10
  • DOI: 10.1149/1.1838018

The Electrochemical Reaction of Lithium with Tin Studied By In Situ AFM
journal, January 2003

  • Beaulieu, L. Y.; Beattie, S. D.; Hatchard, T. D.
  • Journal of The Electrochemical Society, Vol. 150, Issue 4
  • DOI: 10.1149/1.1556595

In situ analytical techniques for battery interface analysis
journal, January 2018

  • Tripathi, Alok M.; Su, Wei-Nien; Hwang, Bing Joe
  • Chemical Society Reviews, Vol. 47, Issue 3
  • DOI: 10.1039/C7CS00180K

Surface Film Formation on Graphite Negative Electrode in Lithium-Ion Batteries: AFM Study in an Ethylene Carbonate-Based Solution
journal, January 2001

  • Jeong, Soon-Ki; Inaba, Minoru; Abe, Takeshi
  • Journal of The Electrochemical Society, Vol. 148, Issue 9
  • DOI: 10.1149/1.1387981

Thermal Stability of the HOPG/Liquid Electrolyte Interphase Studied by In Situ Electrochemical Atomic Force Microscopy
journal, January 2000

  • Edström, Kristina; Herranen, Merja
  • Journal of The Electrochemical Society, Vol. 147, Issue 10
  • DOI: 10.1149/1.1393950

In Situ Electrochemical Atomic Force Microscope Study on Graphite Electrodes
journal, April 1997

  • Hirasawa, Karen A.; Sato, Tomohiro; Asahina, Hitoshi
  • Journal of The Electrochemical Society, Vol. 144, Issue 4
  • DOI: 10.1149/1.1837560

In Situ Measurement of Solid Electrolyte Interphase Evolution on Silicon Anodes Using Atomic Force Microscopy
journal, April 2016

  • Yoon, Insun; Abraham, Daniel P.; Lucht, Brett L.
  • Advanced Energy Materials, Vol. 6, Issue 12
  • DOI: 10.1002/aenm.201600099

Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes
journal, June 2000


Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High-Performance Lithium-Metal Battery Anodes
journal, October 2016


Transparent lithium-ion batteries
journal, July 2011

  • Yang, Yuan; Jeong, Sangmoo; Hu, Liangbing
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 32
  • DOI: 10.1073/pnas.1102873108

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Why Bis(fluorosulfonyl)imide Is a “Magic Anion” for Electrochemistry
journal, August 2014

  • Shkrob, Ilya A.; Marin, Timothy W.; Zhu, Ye
  • The Journal of Physical Chemistry C, Vol. 118, Issue 34
  • DOI: 10.1021/jp506567p

Study of the Initial Stage of Solid Electrolyte Interphase Formation upon Chemical Reaction of Lithium Metal and N -Methyl- N -Propyl-Pyrrolidinium-Bis(Fluorosulfonyl)Imide
journal, September 2012

  • Budi, Akin; Basile, Andrew; Opletal, George
  • The Journal of Physical Chemistry C, Vol. 116, Issue 37
  • DOI: 10.1021/jp304581g

Monochromatic X-ray Photoelectron Spectroscopy Study of Three Different Ionic Liquids in Interaction with Lithium-Decorated Copper Surfaces
journal, January 2017

  • Olschewski, Mark; Gustus, René; Höfft, Oliver
  • The Journal of Physical Chemistry C, Vol. 121, Issue 5
  • DOI: 10.1021/acs.jpcc.6b10139

Über den Balken auf nachgiebiger Unterlage
journal, January 1922

  • Wieghardt, K.
  • ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 2, Issue 3
  • DOI: 10.1002/zamm.19220020301

Periodic patterns and energy states of buckled films on compliant substrates
journal, May 2011

  • Cai, S.; Breid, D.; Crosby, A. J.
  • Journal of the Mechanics and Physics of Solids, Vol. 59, Issue 5
  • DOI: 10.1016/j.jmps.2011.02.001

Nonlinear analyses of wrinkles in a film bonded to a compliant substrate
journal, September 2005

  • Huang, Z. Y.; Hong, W.; Suo, Z.
  • Journal of the Mechanics and Physics of Solids, Vol. 53, Issue 9, p. 2101-2118
  • DOI: 10.1016/j.jmps.2005.03.007

Mechanical Buckling: Mechanics, Metrology, and Stretchable Electronics
journal, May 2009

  • Khang, Dahl-Young; Rogers, John A.; Lee, Hong H.
  • Advanced Functional Materials, Vol. 19, Issue 10
  • DOI: 10.1002/adfm.200801065

A buckling-based metrology for measuring the elastic moduli of polymeric thin films
journal, July 2004

  • Stafford, Christopher M.; Harrison, Christopher; Beers, Kathryn L.
  • Nature Materials, Vol. 3, Issue 8, p. 545-550
  • DOI: 10.1038/nmat1175

Determination of Young’s Modulus for Nanofibrillated Cellulose Multilayer Thin Films Using Buckling Mechanics
journal, April 2011

  • Cranston, Emily D.; Eita, Mohamed; Johansson, Erik
  • Biomacromolecules, Vol. 12, Issue 4
  • DOI: 10.1021/bm101330w

Determining the Young's Modulus of Polyelectrolyte Multilayer Films via Stress-Induced Mechanical Buckling Instabilities
journal, June 2005

  • Nolte, Adam J.; Rubner, Michael F.; Cohen, Robert E.
  • Macromolecules, Vol. 38, Issue 13
  • DOI: 10.1021/ma0507950

Relationship between Young’s Modulus and Film Architecture in Cellulose Nanofibril-Based Multilayered Thin Films
journal, April 2017


Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering
journal, February 2014

  • Johnston, I. D.; McCluskey, D. K.; Tan, C. K. L.
  • Journal of Micromechanics and Microengineering, Vol. 24, Issue 3
  • DOI: 10.1088/0960-1317/24/3/035017

Spontaneous formation of complex and ordered structures on oxygen-plasma-treated elastomeric polydimethylsiloxane
journal, February 2000

  • Chua, Diana B. H.; Ng, H. T.; Li, Sam F. Y.
  • Applied Physics Letters, Vol. 76, Issue 6
  • DOI: 10.1063/1.125873

A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


XPS analysis of the SEI formed on carbonaceous materials
journal, May 2004


Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries
journal, April 2014


Characterization of the Lithium Surface in N-Methyl-N-alkylpyrrolidinium Bis(trifluoromethanesulfonyl)amide Room-Temperature Ionic Liquid Electrolytes
journal, January 2006

  • Howlett, P. C.; Brack, N.; Hollenkamp, A. F.
  • Journal of The Electrochemical Society, Vol. 153, Issue 3
  • DOI: 10.1149/1.2164726

Reduction Reactions of Electrolyte Salts for Lithium Ion Batteries: LiPF 6 , LiBF 4 , LiDFOB, LiBOB, and LiTFSI
journal, January 2018

  • Parimalam, Bharathy S.; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.0901802jes

Mechanical and Thermal Properties of Certain Optical Crystalline Materials*
journal, January 1951

  • Combes, Lewis S.; Ballard, Stanley S.; McCarthy, Kathryn A.
  • Journal of the Optical Society of America, Vol. 41, Issue 4
  • DOI: 10.1364/JOSA.41.000215

Works referencing / citing this record:

Recent Progress of Metal–Air Batteries—A Mini Review
journal, July 2019

  • Wang, Chunlian; Yu, Yongchao; Niu, Jiajia
  • Applied Sciences, Vol. 9, Issue 14
  • DOI: 10.3390/app9142787