skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Size-dependent kinetics during non-equilibrium lithiation of nano-sized zinc ferrite

Abstract

Spinel transition metal oxides (TMOs) have emerged as promising anode materials for lithium-ion batteries. It has been shown that reducing their particle size to nanoscale dimensions benefits overall electrochemical performance. Here, we use in situ transmission electron microscopy to probe the lithiation behavior of spinel ZnFe2O4 as a function of particle size. We have found that ZnFe2O4 undergoes an intercalation-to-conversion reaction sequence, with the initial intercalation process being size dependent. Larger ZnFe2O4 particles (40 nm) follow a two-phase intercalation reaction. In contrast, a solid-solution transformation dominates the early stages of discharge when the particle size is about 6–9 nm. Using a thermodynamic analysis, we find that the size-dependent kinetics originate from the interfacial energy between the two phases. Furthermore, the conversion reaction in both large and small particles favors {111} planes and follows a core-shell reaction mode. Finally, these results elucidate the intrinsic mechanism that permits fast reaction kinetics in smaller nanoparticles.

Authors:
 [1]; ORCiD logo [2];  [3];  [4]; ORCiD logo [4];  [5]; ORCiD logo [2]; ORCiD logo [6];  [7];  [5];  [2]; ORCiD logo [8]
  1. State Univ. of New York (SUNY), Plattsburgh, NY (United States); Stony Brook Univ., NY (United States). Dept. of Materials Science and Chemical Engineering
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Condensed Matter Physics
  3. State Univ. of New York (SUNY), Plattsburgh, NY (United States); Stony Brook Univ., NY (United States). Dept. of Chemistry
  4. Univ. of Texas, Austin, TX (United States). Materials Science and Engineering Program and Dept. of Mechanical Engineering
  5. State Univ. of New York (SUNY), Plattsburgh, NY (United States); Stony Brook Univ., NY (United States). Dept. of Materials Science and Chemical Engineering, and Dept. of Chemistry; Brookhaven National Lab. (BNL), Upton, NY (United States)
  6. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
  7. State Univ. of New York (SUNY), Plattsburgh, NY (United States); Stony Brook Univ., NY (United States). Dept. of Materials Science and Chemical Engineering, and Dept. of Chemistry
  8. Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2mt); Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1493184
Report Number(s):
BNL-211237-2019-JAAM
Journal ID: ISSN 2041-1723
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Li, Jing, Meng, Qingping, Zhang, Yiman, Peng, Lele, Yu, Guihua, Marschilok, Amy C., Wu, Lijun, Su, Dong, Takeuchi, Kenneth J., Takeuchi, Esther S., Zhu, Yimei, and Stach, Eric A. Size-dependent kinetics during non-equilibrium lithiation of nano-sized zinc ferrite. United States: N. p., 2019. Web. doi:10.1038/s41467-018-07831-5.
Li, Jing, Meng, Qingping, Zhang, Yiman, Peng, Lele, Yu, Guihua, Marschilok, Amy C., Wu, Lijun, Su, Dong, Takeuchi, Kenneth J., Takeuchi, Esther S., Zhu, Yimei, & Stach, Eric A. Size-dependent kinetics during non-equilibrium lithiation of nano-sized zinc ferrite. United States. doi:10.1038/s41467-018-07831-5.
Li, Jing, Meng, Qingping, Zhang, Yiman, Peng, Lele, Yu, Guihua, Marschilok, Amy C., Wu, Lijun, Su, Dong, Takeuchi, Kenneth J., Takeuchi, Esther S., Zhu, Yimei, and Stach, Eric A. Wed . "Size-dependent kinetics during non-equilibrium lithiation of nano-sized zinc ferrite". United States. doi:10.1038/s41467-018-07831-5. https://www.osti.gov/servlets/purl/1493184.
@article{osti_1493184,
title = {Size-dependent kinetics during non-equilibrium lithiation of nano-sized zinc ferrite},
author = {Li, Jing and Meng, Qingping and Zhang, Yiman and Peng, Lele and Yu, Guihua and Marschilok, Amy C. and Wu, Lijun and Su, Dong and Takeuchi, Kenneth J. and Takeuchi, Esther S. and Zhu, Yimei and Stach, Eric A.},
abstractNote = {Spinel transition metal oxides (TMOs) have emerged as promising anode materials for lithium-ion batteries. It has been shown that reducing their particle size to nanoscale dimensions benefits overall electrochemical performance. Here, we use in situ transmission electron microscopy to probe the lithiation behavior of spinel ZnFe2O4 as a function of particle size. We have found that ZnFe2O4 undergoes an intercalation-to-conversion reaction sequence, with the initial intercalation process being size dependent. Larger ZnFe2O4 particles (40 nm) follow a two-phase intercalation reaction. In contrast, a solid-solution transformation dominates the early stages of discharge when the particle size is about 6–9 nm. Using a thermodynamic analysis, we find that the size-dependent kinetics originate from the interfacial energy between the two phases. Furthermore, the conversion reaction in both large and small particles favors {111} planes and follows a core-shell reaction mode. Finally, these results elucidate the intrinsic mechanism that permits fast reaction kinetics in smaller nanoparticles.},
doi = {10.1038/s41467-018-07831-5},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Tunable 3D Nanostructured Conductive Gel Framework Electrode for High-Performance Lithium Ion Batteries
journal, March 2017


High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications
journal, June 2006

  • Taberna, P. L.; Mitra, S.; Poizot, P.
  • Nature Materials, Vol. 5, Issue 7, p. 567-573
  • DOI: 10.1038/nmat1672

CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries
journal, October 2007


Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries
journal, August 2011

  • Komaba, Shinichi; Murata, Wataru; Ishikawa, Toru
  • Advanced Functional Materials, Vol. 21, Issue 20
  • DOI: 10.1002/adfm.201100854

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0<x<2)
journal, June 1982


Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries
journal, January 2008


Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries
journal, January 2011

  • Ji, Liwen; Lin, Zhan; Alcoutlabi, Mataz
  • Energy & Environmental Science, Vol. 4, Issue 8, p. 2682-2699
  • DOI: 10.1039/c0ee00699h

Electrospun Core–Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes
journal, January 2012

  • Hwang, Tae Hoon; Lee, Yong Min; Kong, Byung-Seon
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203817r

Carbon Coated Fe 3 O 4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries
journal, December 2008

  • Zhang, Wei-Ming; Wu, Xing-Long; Hu, Jin-Song
  • Advanced Functional Materials, Vol. 18, Issue 24
  • DOI: 10.1002/adfm.200801386

In Situ TEM Study of Lithiation Behavior of Silicon Nanoparticles Attached to and Embedded in a Carbon Matrix
journal, August 2012


Kinetics of non-equilibrium lithium incorporation in LiFePO4
journal, July 2011

  • Malik, Rahul; Zhou, Fei; Ceder, G.
  • Nature Materials, Vol. 10, Issue 8
  • DOI: 10.1038/nmat3065

From the vanadates to 3d-metal oxides negative electrodes
journal, September 2000


Particle Size Dependence of the Ionic Diffusivity
journal, October 2010

  • Malik, Rahul; Burch, Damian; Bazant, Martin
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl1023595

Nanomaterials for Rechargeable Lithium Batteries
journal, April 2008

  • Bruce, Peter G.; Scrosati, Bruno; Tarascon, Jean-Marie
  • Angewandte Chemie International Edition, Vol. 47, Issue 16, p. 2930-2946
  • DOI: 10.1002/anie.200702505

Carbon Coated ZnFe 2 O 4 Nanoparticles for Advanced Lithium-Ion Anodes
journal, November 2012

  • Bresser, Dominic; Paillard, Elie; Kloepsch, Richard
  • Advanced Energy Materials, Vol. 3, Issue 4
  • DOI: 10.1002/aenm.201200735

High-temperature lithiation of α-Fe2O3: A mechanistic study
journal, December 1984


Real-Time NMR Investigations of Structural Changes in Silicon Electrodes for Lithium-Ion Batteries
journal, July 2009

  • Key, Baris; Bhattacharyya, Rangeet; Morcrette, Mathieu
  • Journal of the American Chemical Society, Vol. 131, Issue 26
  • DOI: 10.1021/ja8086278

Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries
journal, September 2015


Transitions from Near-Surface to Interior Redox upon Lithiation in Conversion Electrode Materials
journal, January 2015

  • He, Kai; Xin, Huolin L.; Zhao, Kejie
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl5049884

Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode
journal, May 2010

  • Ban, Chunmei; Wu, Zhuangchun; Gillaspie, Dane T.
  • Advanced Materials, Vol. 22, Issue 20, p. E145-E149
  • DOI: 10.1002/adma.200904285

Facile Shape Control of Co 3 O 4 and the Effect of the Crystal Plane on Electrochemical Performance
journal, August 2012


Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects
journal, May 2008

  • Hardwick, Laurence J.; Ruch, Patrick W.; Hahn, Matthias
  • Journal of Physics and Chemistry of Solids, Vol. 69, Issue 5-6
  • DOI: 10.1016/j.jpcs.2007.10.017

Lithium insertion into Co3O4: A preliminary investigation
journal, September 1985


Lithium insertion into spinel ferrites
journal, January 1986


Kinetic Phase Evolution of Spinel Cobalt Oxide during Lithiation
journal, September 2016


Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries
journal, January 2012

  • Zhao, Kejie; Pharr, Matt; Wan, Qiang
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.020203jes

Side-Chain Conducting and Phase-Separated Polymeric Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries
journal, February 2015

  • Park, Sang-Jae; Zhao, Hui; Ai, Guo
  • Journal of the American Chemical Society, Vol. 137, Issue 7
  • DOI: 10.1021/ja511181p

Spinel Anodes for Lithium-Ion Batteries
journal, January 1994

  • Ferg, E.; Gummow, R. J.; de Kock, A.
  • Journal of The Electrochemical Society, Vol. 141, Issue 11, p. L147-L150
  • DOI: 10.1149/1.2059324

In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres
journal, January 2013

  • McDowell, Matthew T.; Lee, Seok Woo; Harris, Justin T.
  • Nano Letters, Vol. 13, Issue 2
  • DOI: 10.1021/nl3044508

Isolation of Solid Solution Phases in Size-Controlled Li x FePO 4 at Room Temperature
journal, February 2009

  • Kobayashi, Genki; Nishimura, Shin-ichi; Park, Min-Sik
  • Advanced Functional Materials, Vol. 19, Issue 3
  • DOI: 10.1002/adfm.200801522

Recent advances in rechargeable battery materials: a chemist’s perspective
journal, January 2009

  • Palacín, M. Rosa
  • Chemical Society Reviews, Vol. 38, Issue 9
  • DOI: 10.1039/b820555h

57Fe Mössbauer Spectroscopy and Electron Microscopy Study of Metal Extraction from CuFe2O4 Electrodes in Lithium Cells
journal, September 2007

  • Bomio, Mauricio; Lavela, Pedro; Tirado, José Luis
  • ChemPhysChem, Vol. 8, Issue 13
  • DOI: 10.1002/cphc.200700331

One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries
journal, June 2012


Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes
journal, June 2014


Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
journal, January 2012

  • Liu, Xiao Hua; Zhong, Li; Huang, Shan
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204476h

In Situ Atomic-Scale Imaging of Phase Boundary Migration in FePO 4 Microparticles During Electrochemical Lithiation
journal, July 2013


Pair Distribution Function Analysis and Solid State NMR Studies of Silicon Electrodes for Lithium Ion Batteries: Understanding the (De)lithiation Mechanisms
journal, January 2011

  • Key, Baris; Morcrette, Mathieu; Tarascon, Jean-Marie
  • Journal of the American Chemical Society, Vol. 133, Issue 3
  • DOI: 10.1021/ja108085d

Origin of additional capacities in metal oxide lithium-ion battery electrodes
journal, November 2013

  • Hu, Yan-Yan; Liu, Zigeng; Nam, Kyung-Wan
  • Nature Materials, Vol. 12, Issue 12
  • DOI: 10.1038/nmat3784

Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005

  • Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
  • Nature Materials, Vol. 4, Issue 5, p. 366-377
  • DOI: 10.1038/nmat1368

Electrochemical evaluation of CuFe2O4 samples obtained by sol–gel methods used as anodes in lithium batteries
journal, September 2007

  • Bomio, M.; Lavela, P.; Tirado, J. L.
  • Journal of Solid State Electrochemistry, Vol. 12, Issue 6
  • DOI: 10.1007/s10008-007-0420-3

Atomic-Scale Monitoring of Electrode Materials in Lithium-Ion Batteries using In Situ Transmission Electron Microscopy
journal, October 2017

  • Shang, Tongtong; Wen, Yuren; Xiao, Dongdong
  • Advanced Energy Materials, Vol. 7, Issue 23
  • DOI: 10.1002/aenm.201700709

A first principles study of spinel ZnFe 2 O 4 for electrode materials in lithium-ion batteries
journal, January 2017

  • Guo, Haoyue; Zhang, Yiman; Marschilok, Amy C.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 38
  • DOI: 10.1039/C7CP04590E

Size-Dependent Staging and Phase Transition in LiFePO 4 /FePO 4
journal, September 2013

  • Zhu, Changbao; Gu, Lin; Suo, Liumin
  • Advanced Functional Materials, Vol. 24, Issue 3
  • DOI: 10.1002/adfm.201301792

A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes
journal, May 2012

  • Liu, Nian; Wu, Hui; McDowell, Matthew T.
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl3014814

Nanocrystalline ZnFe[sub 2]O[sub 4] and Ag-Doped ZnFe[sub 2]O[sub 4] Films Used as New Anode Materials for Li-Ion Batteries
journal, January 2004

  • NuLi, Yan-Na; Chu, Yan-Qiu; Qin, Qi-Zong
  • Journal of The Electrochemical Society, Vol. 151, Issue 7
  • DOI: 10.1149/1.1760576

Optimal and near‐optimal filters in high‐resolution electron microscopy
journal, April 1998


Surface structure and equilibrium particle shape of the LiMn 2 O 4 spinel from first-principles calculations
journal, February 2013


Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy
journal, August 2017

  • Yuan, Yifei; Amine, Khalil; Lu, Jun
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15806

    Works referencing / citing this record:

    Phase evolution of conversion-type electrode for lithium ion batteries
    journal, May 2019