skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Size-dependent kinetics during non-equilibrium lithiation of nano-sized zinc ferrite

Abstract

Spinel transition metal oxides (TMOs) have emerged as promising anode materials for lithium-ion batteries. It has been shown that reducing their particle size to nanoscale dimensions benefits overall electrochemical performance. Here, we use in situ transmission electron microscopy to probe the lithiation behavior of spinel ZnFe 2O 4 as a function of particle size. We have found that ZnFe 2O 4 undergoes an intercalation-to-conversion reaction sequence, with the initial intercalation process being size dependent. Larger ZnFe 2O 4 particles (40 nm) follow a two-phase intercalation reaction. In contrast, a solid-solution transformation dominates the early stages of discharge when the particle size is about 6–9 nm. Using a thermodynamic analysis, we find that the size-dependent kinetics originate from the interfacial energy between the two phases. Furthermore, the conversion reaction in both large and small particles favors {111} planes and follows a core-shell reaction mode. Finally, these results elucidate the intrinsic mechanism that permits fast reaction kinetics in smaller nanoparticles.

Authors:
 [1]; ORCiD logo [2];  [3];  [4]; ORCiD logo [4];  [5]; ORCiD logo [2]; ORCiD logo [6];  [7];  [5];  [2]; ORCiD logo [8]
  1. State Univ. of New York (SUNY), Plattsburgh, NY (United States); Stony Brook Univ., NY (United States). Dept. of Materials Science and Chemical Engineering
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Condensed Matter Physics
  3. State Univ. of New York (SUNY), Plattsburgh, NY (United States); Stony Brook Univ., NY (United States). Dept. of Chemistry
  4. Univ. of Texas, Austin, TX (United States). Materials Science and Engineering Program and Dept. of Mechanical Engineering
  5. State Univ. of New York (SUNY), Plattsburgh, NY (United States); Stony Brook Univ., NY (United States). Dept. of Materials Science and Chemical Engineering, and Dept. of Chemistry; Brookhaven National Lab. (BNL), Upton, NY (United States)
  6. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
  7. State Univ. of New York (SUNY), Plattsburgh, NY (United States); Stony Brook Univ., NY (United States). Dept. of Materials Science and Chemical Engineering, and Dept. of Chemistry
  8. Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2mt); Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1493184
Report Number(s):
BNL-211237-2019-JAAM
Journal ID: ISSN 2041-1723
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Li, Jing, Meng, Qingping, Zhang, Yiman, Peng, Lele, Yu, Guihua, Marschilok, Amy C., Wu, Lijun, Su, Dong, Takeuchi, Kenneth J., Takeuchi, Esther S., Zhu, Yimei, and Stach, Eric A. Size-dependent kinetics during non-equilibrium lithiation of nano-sized zinc ferrite. United States: N. p., 2019. Web. doi:10.1038/s41467-018-07831-5.
Li, Jing, Meng, Qingping, Zhang, Yiman, Peng, Lele, Yu, Guihua, Marschilok, Amy C., Wu, Lijun, Su, Dong, Takeuchi, Kenneth J., Takeuchi, Esther S., Zhu, Yimei, & Stach, Eric A. Size-dependent kinetics during non-equilibrium lithiation of nano-sized zinc ferrite. United States. doi:10.1038/s41467-018-07831-5.
Li, Jing, Meng, Qingping, Zhang, Yiman, Peng, Lele, Yu, Guihua, Marschilok, Amy C., Wu, Lijun, Su, Dong, Takeuchi, Kenneth J., Takeuchi, Esther S., Zhu, Yimei, and Stach, Eric A. Wed . "Size-dependent kinetics during non-equilibrium lithiation of nano-sized zinc ferrite". United States. doi:10.1038/s41467-018-07831-5. https://www.osti.gov/servlets/purl/1493184.
@article{osti_1493184,
title = {Size-dependent kinetics during non-equilibrium lithiation of nano-sized zinc ferrite},
author = {Li, Jing and Meng, Qingping and Zhang, Yiman and Peng, Lele and Yu, Guihua and Marschilok, Amy C. and Wu, Lijun and Su, Dong and Takeuchi, Kenneth J. and Takeuchi, Esther S. and Zhu, Yimei and Stach, Eric A.},
abstractNote = {Spinel transition metal oxides (TMOs) have emerged as promising anode materials for lithium-ion batteries. It has been shown that reducing their particle size to nanoscale dimensions benefits overall electrochemical performance. Here, we use in situ transmission electron microscopy to probe the lithiation behavior of spinel ZnFe2O4 as a function of particle size. We have found that ZnFe2O4 undergoes an intercalation-to-conversion reaction sequence, with the initial intercalation process being size dependent. Larger ZnFe2O4 particles (40 nm) follow a two-phase intercalation reaction. In contrast, a solid-solution transformation dominates the early stages of discharge when the particle size is about 6–9 nm. Using a thermodynamic analysis, we find that the size-dependent kinetics originate from the interfacial energy between the two phases. Furthermore, the conversion reaction in both large and small particles favors {111} planes and follows a core-shell reaction mode. Finally, these results elucidate the intrinsic mechanism that permits fast reaction kinetics in smaller nanoparticles.},
doi = {10.1038/s41467-018-07831-5},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications
journal, June 2006

  • Taberna, P. L.; Mitra, S.; Poizot, P.
  • Nature Materials, Vol. 5, Issue 7, p. 567-573
  • DOI: 10.1038/nmat1672

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries
journal, January 2011

  • Ji, Liwen; Lin, Zhan; Alcoutlabi, Mataz
  • Energy & Environmental Science, Vol. 4, Issue 8, p. 2682-2699
  • DOI: 10.1039/c0ee00699h

Nanomaterials for Rechargeable Lithium Batteries
journal, April 2008

  • Bruce, Peter G.; Scrosati, Bruno; Tarascon, Jean-Marie
  • Angewandte Chemie International Edition, Vol. 47, Issue 16, p. 2930-2946
  • DOI: 10.1002/anie.200702505

Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode
journal, May 2010

  • Ban, Chunmei; Wu, Zhuangchun; Gillaspie, Dane T.
  • Advanced Materials, Vol. 22, Issue 20, p. E145-E149
  • DOI: 10.1002/adma.200904285

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

Spinel Anodes for Lithium-Ion Batteries
journal, January 1994

  • Ferg, E.; Gummow, R. J.; de Kock, A.
  • Journal of The Electrochemical Society, Vol. 141, Issue 11, p. L147-L150
  • DOI: 10.1149/1.2059324

Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005

  • Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
  • Nature Materials, Vol. 4, Issue 5, p. 366-377
  • DOI: 10.1038/nmat1368