DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CO2 Capture via Crystalline Hydrogen-Bonded Bicarbonate Dimers

Abstract

Human activities in the last one and a half centuries have perturbed the natural carbon cycle, shifting massive amounts of carbon from the geosphere into the atmosphere and leading to climate change at an unprecedented pace. Carbon capture and storage, consisting of capturing CO2 from fossil fuel emissions and sequestering it deep underground, offer the prospect of limiting the increase in the atmospheric CO2 concentration and the global temperature. This requires the development and large-scale deployment of energy-efficient carbon-capture technologies. Here, we demonstrate a promising approach to CO2 capture based on crystallization of bicarbonate-water clusters with a simple guanidine compound. Furthermore, the CO2 separation cycle involves a unique proton-transfer mechanism via the formation of a carbonic acid dimer, leading to efficient CO2 release and quantitative regeneration of the guanidine compound and requiring significantly less energy than state-of-the-art carbon-capture technologies.

Authors:
; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1604803
Alternate Identifier(s):
OSTI ID: 1493130
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Published Article
Journal Name:
Chem
Additional Journal Information:
Journal Name: Chem Journal Volume: 5 Journal Issue: 3; Journal ID: ISSN 2451-9294
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; carbon capture; carbonic acid; crystallization; guanidine; hydrogen bonding; anion clusters

Citation Formats

Williams, Neil J., Seipp, Charles A., Brethomé, Flavien M., Ma, Ying-Zhong, Ivanov, Alexander S., Bryantsev, Vyacheslav S., Kidder, Michelle K., Martin, Halie J., Holguin, Erick, Garrabrant, Kathleen A., and Custelcean, Radu. CO2 Capture via Crystalline Hydrogen-Bonded Bicarbonate Dimers. United States: N. p., 2019. Web. doi:10.1016/j.chempr.2018.12.025.
Williams, Neil J., Seipp, Charles A., Brethomé, Flavien M., Ma, Ying-Zhong, Ivanov, Alexander S., Bryantsev, Vyacheslav S., Kidder, Michelle K., Martin, Halie J., Holguin, Erick, Garrabrant, Kathleen A., & Custelcean, Radu. CO2 Capture via Crystalline Hydrogen-Bonded Bicarbonate Dimers. United States. https://doi.org/10.1016/j.chempr.2018.12.025
Williams, Neil J., Seipp, Charles A., Brethomé, Flavien M., Ma, Ying-Zhong, Ivanov, Alexander S., Bryantsev, Vyacheslav S., Kidder, Michelle K., Martin, Halie J., Holguin, Erick, Garrabrant, Kathleen A., and Custelcean, Radu. Fri . "CO2 Capture via Crystalline Hydrogen-Bonded Bicarbonate Dimers". United States. https://doi.org/10.1016/j.chempr.2018.12.025.
@article{osti_1604803,
title = {CO2 Capture via Crystalline Hydrogen-Bonded Bicarbonate Dimers},
author = {Williams, Neil J. and Seipp, Charles A. and Brethomé, Flavien M. and Ma, Ying-Zhong and Ivanov, Alexander S. and Bryantsev, Vyacheslav S. and Kidder, Michelle K. and Martin, Halie J. and Holguin, Erick and Garrabrant, Kathleen A. and Custelcean, Radu},
abstractNote = {Human activities in the last one and a half centuries have perturbed the natural carbon cycle, shifting massive amounts of carbon from the geosphere into the atmosphere and leading to climate change at an unprecedented pace. Carbon capture and storage, consisting of capturing CO2 from fossil fuel emissions and sequestering it deep underground, offer the prospect of limiting the increase in the atmospheric CO2 concentration and the global temperature. This requires the development and large-scale deployment of energy-efficient carbon-capture technologies. Here, we demonstrate a promising approach to CO2 capture based on crystallization of bicarbonate-water clusters with a simple guanidine compound. Furthermore, the CO2 separation cycle involves a unique proton-transfer mechanism via the formation of a carbonic acid dimer, leading to efficient CO2 release and quantitative regeneration of the guanidine compound and requiring significantly less energy than state-of-the-art carbon-capture technologies.},
doi = {10.1016/j.chempr.2018.12.025},
journal = {Chem},
number = 3,
volume = 5,
place = {United States},
year = {Fri Mar 01 00:00:00 EST 2019},
month = {Fri Mar 01 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.chempr.2018.12.025

Citation Metrics:
Cited by: 41 works
Citation information provided by
Web of Science

Save / Share:

Works referencing / citing this record:

Molecular Tectonics: A Node‐and‐Linker Building Block Approach to a Family of Hydrogen‐Bonded Frameworks
journal, July 2019

  • Boer, Stephanie A.; Morshedi, Mahbod; Tarzia, Andrew
  • Chemistry – A European Journal, Vol. 25, Issue 42
  • DOI: 10.1002/chem.201902117

A three dimensional hydrogen bonded organic framework assembled through antielectrostatic hydrogen bonds
journal, January 2019

  • Cullen, Duncan A.; Gardiner, Michael G.; White, Nicholas G.
  • Chemical Communications, Vol. 55, Issue 80
  • DOI: 10.1039/c9cc06707h

Multifunctional 1,3-diphenylguanidine for the carboxylative cyclization of homopropargyl amines with CO 2 under ambient temperature and pressure
journal, January 2019

  • Gao, Xiao-Tong; Xie, Shi-Liang; Zhou, Feng
  • Chemical Communications, Vol. 55, Issue 95
  • DOI: 10.1039/c9cc07671a

Molecular Tectonics: A Node‐and‐Linker Building Block Approach to a Family of Hydrogen‐Bonded Frameworks
journal, July 2019

  • Boer, Stephanie A.; Morshedi, Mahbod; Tarzia, Andrew
  • Chemistry – A European Journal, Vol. 25, Issue 42
  • DOI: 10.1002/chem.201902117

A three dimensional hydrogen bonded organic framework assembled through antielectrostatic hydrogen bonds
journal, January 2019

  • Cullen, Duncan A.; Gardiner, Michael G.; White, Nicholas G.
  • Chemical Communications, Vol. 55, Issue 80
  • DOI: 10.1039/c9cc06707h

Multifunctional 1,3-diphenylguanidine for the carboxylative cyclization of homopropargyl amines with CO 2 under ambient temperature and pressure
journal, January 2019

  • Gao, Xiao-Tong; Xie, Shi-Liang; Zhou, Feng
  • Chemical Communications, Vol. 55, Issue 95
  • DOI: 10.1039/c9cc07671a