DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In situ analysis of the structural transformation of glassy carbon under compression at room temperature

Abstract

Room temperature compression of graphitic materials leads to interesting superhard sp3 rich phases which are sometimes transparent. In the case of graphite itself, the sp3 rich phase is proposed to be monoclinic M-carbon; however, for disordered materials such as glassy carbon the nature of the transformation is unknown. We compress glassy carbon at room temperature in a diamond anvil cell, examine the structure in situ using x-ray diffraction, and interpret the findings with molecular dynamics modeling. Experiment and modeling both predict a two-stage transformation. First, the isotropic glassy carbon undergoes a reversible transformation to an oriented compressed graphitic structure. This is followed by a phase transformation at ~35 GPa to an unstable, disordered sp3 rich structure that reverts on decompression to an oriented graphitic structure. Analysis of the simulated sp3 rich material formed at high pressure reveals a noncrystalline structure with two different sp3 bond lengths.

Authors:
 [1];  [2];  [3];  [4];  [5];  [2];  [2];  [6]; ORCiD logo [7];  [1]
  1. Australian National Univ., Canberra, ACT (Australia)
  2. Curtin Univ., Perth, WA (United States)
  3. RMIT Univ., Melbourne, VIC (Australia)
  4. Univ. of Sydney, NSW (Australia)
  5. Carnegie Inst. of Washington, Washington, DC (United States)
  6. Carnegie Inst. of Washington, Washington, DC (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  7. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Energy Frontier Research in Extreme Environments (EFree); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1607302
Alternate Identifier(s):
OSTI ID: 1492909
Grant/Contract Number:  
AC05-00OR22725; AC02-06CH11357; FT120100924; SC0001057; NA0001974
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 99; Journal Issue: 2; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; carbon-based materials; molecular dynamics; pressure techniques; X-ray diffraction

Citation Formats

Shiell, Tom B., de Tomas, C., McCulloch, D. G., McKenzie, D. R., Basu, A., Suarez-Martinez, I., Marks, N. A., Boehler, Reinhard, Haberl, Bianca, and Bradby, J. E. In situ analysis of the structural transformation of glassy carbon under compression at room temperature. United States: N. p., 2019. Web. doi:10.1103/PhysRevB.99.024114.
Shiell, Tom B., de Tomas, C., McCulloch, D. G., McKenzie, D. R., Basu, A., Suarez-Martinez, I., Marks, N. A., Boehler, Reinhard, Haberl, Bianca, & Bradby, J. E. In situ analysis of the structural transformation of glassy carbon under compression at room temperature. United States. https://doi.org/10.1103/PhysRevB.99.024114
Shiell, Tom B., de Tomas, C., McCulloch, D. G., McKenzie, D. R., Basu, A., Suarez-Martinez, I., Marks, N. A., Boehler, Reinhard, Haberl, Bianca, and Bradby, J. E. Wed . "In situ analysis of the structural transformation of glassy carbon under compression at room temperature". United States. https://doi.org/10.1103/PhysRevB.99.024114. https://www.osti.gov/servlets/purl/1607302.
@article{osti_1607302,
title = {In situ analysis of the structural transformation of glassy carbon under compression at room temperature},
author = {Shiell, Tom B. and de Tomas, C. and McCulloch, D. G. and McKenzie, D. R. and Basu, A. and Suarez-Martinez, I. and Marks, N. A. and Boehler, Reinhard and Haberl, Bianca and Bradby, J. E.},
abstractNote = {Room temperature compression of graphitic materials leads to interesting superhard sp3 rich phases which are sometimes transparent. In the case of graphite itself, the sp3 rich phase is proposed to be monoclinic M-carbon; however, for disordered materials such as glassy carbon the nature of the transformation is unknown. We compress glassy carbon at room temperature in a diamond anvil cell, examine the structure in situ using x-ray diffraction, and interpret the findings with molecular dynamics modeling. Experiment and modeling both predict a two-stage transformation. First, the isotropic glassy carbon undergoes a reversible transformation to an oriented compressed graphitic structure. This is followed by a phase transformation at ~35 GPa to an unstable, disordered sp3 rich structure that reverts on decompression to an oriented graphitic structure. Analysis of the simulated sp3 rich material formed at high pressure reveals a noncrystalline structure with two different sp3 bond lengths.},
doi = {10.1103/PhysRevB.99.024114},
journal = {Physical Review B},
number = 2,
volume = 99,
place = {United States},
year = {Wed Jan 30 00:00:00 EST 2019},
month = {Wed Jan 30 00:00:00 EST 2019}
}

Journal Article:

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Structure of Glassy Carbon
journal, May 1971

  • Jenkins, G. M.; Kawamura, K.
  • Nature, Vol. 231, Issue 5299
  • DOI: 10.1038/231175a0

Light-Transparent Phase Formed by Room-Temperature Compression of Graphite
journal, June 1991


Amorphous Diamond: A High-Pressure Superhard Carbon Allotrope
journal, October 2011


Graphitization of Glassy Carbon after Compression at Room Temperature
journal, May 2018


Graphitization of amorphous carbons: A comparative study of interatomic potentials
journal, November 2016


Synthesis of quenchable amorphous diamond
journal, August 2017


Structure, Bonding, and Mineralogy of Carbon at Extreme Conditions
journal, January 2013

  • Oganov, A. R.; Hemley, R. J.; Hazen, R. M.
  • Reviews in Mineralogy and Geochemistry, Vol. 75, Issue 1
  • DOI: 10.2138/rmg.2013.75.3

Novel diamond cells for neutron diffraction using multi-carat CVD anvils
journal, August 2017

  • Boehler, R.; Molaison, J. J.; Haberl, B.
  • Review of Scientific Instruments, Vol. 88, Issue 8
  • DOI: 10.1063/1.4997265

Uniaxial-stress-driven transformation in cold compressed glassy carbon
journal, September 2017

  • Yao, Mingguang; Fan, Xianhong; Zhang, Weiwei
  • Applied Physics Letters, Vol. 111, Issue 10
  • DOI: 10.1063/1.4996278

The shear-driven transformation mechanism from glassy carbon to hexagonal diamond
journal, February 2019


Superhard Monoclinic Polymorph of Carbon
journal, April 2009


Low-Temperature Phase Transformation from Graphite to s p 3 Orthorhombic Carbon
journal, February 2011


New diamond cell for single-crystal x-ray diffraction
journal, November 2006

  • Boehler, Reinhard
  • Review of Scientific Instruments, Vol. 77, Issue 11
  • DOI: 10.1063/1.2372734

Carbide-derived carbons for dense and tunable 3D graphene networks
journal, June 2018

  • de Tomas, Carla; Suarez-Martinez, Irene; Marks, Nigel A.
  • Applied Physics Letters, Vol. 112, Issue 25
  • DOI: 10.1063/1.5030136

Microstructural investigation supporting an abrupt stress induced transformation in amorphous carbon films
journal, April 2009

  • Lau, D. W. M.; Partridge, J. G.; Taylor, M. B.
  • Journal of Applied Physics, Vol. 105, Issue 8
  • DOI: 10.1063/1.3075867

Bonding Changes in Compressed Superhard Graphite
journal, October 2003


Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties
journal, February 2015

  • Zhao, Zhisheng; Wang, Erik F.; Yan, Hongping
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7212

Novel Superhard Carbon: C-Centered Orthorhombic C 8
journal, November 2011


Body-Centered Tetragonal C 4 : A Viable s p 3 Carbon Allotrope
journal, March 2010


Global transition path search for dislocation formation in Ge on Si(001)
journal, August 2016


Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool
journal, December 2009


Crystal Structure of Cold Compressed Graphite
journal, February 2012


Crystal structure of graphite under room-temperature compression and decompression
journal, July 2012

  • Wang, Yuejian; Panzik, Joseph E.; Kiefer, Boris
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00520

Nanocrystalline hexagonal diamond formed from glassy carbon
journal, November 2016

  • Shiell, Thomas. B.; McCulloch, Dougal G.; Bradby, Jodie E.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep37232

DIOPTAS : a program for reduction of two-dimensional X-ray diffraction data and data exploration
journal, May 2015


Systematic search for low-enthalpy s p 3 carbon allotropes using evolutionary metadynamics
journal, May 2012


Determination of bonding in diamond-like carbon by Raman spectroscopy
journal, March 2002


From soft to superhard: Fifty years of experiments on cold-compressed graphite
journal, November 2012


Generalizing the environment-dependent interaction potential for carbon
journal, December 2000


Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network
journal, June 2017


Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions
journal, January 1986

  • Mao, H. K.; Xu, J.; Bell, P. M.
  • Journal of Geophysical Research, Vol. 91, Issue B5, p. 4673-4676
  • DOI: 10.1029/JB091iB05p04673

Raman spectroscopy of glassy carbon up to 60 GPa
journal, March 2013

  • Solopova, N. A.; Dubrovinskaia, N.; Dubrovinsky, L.
  • Applied Physics Letters, Vol. 102, Issue 12
  • DOI: 10.1063/1.4798660

Understanding the nature of “superhard graphite”
journal, June 2012

  • Boulfelfel, Salah Eddine; Oganov, Artem R.; Leoni, Stefano
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00471

Fullerene-related structure of commercial glassy carbons
journal, October 2004


Understanding the nature of "superhard graphite"
text, January 2012


Global transition path search for dislocation formation in Ge on Si(001)
text, January 2016