DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron strahl and halo formation in the solar wind

Abstract

Here, we propose a kinetic model describing the formation of the strahl and halo electron populations in the solar wind. We demonstrate that the suprathermal electrons propagating from the Sun along the Parker-spiral magnetic field lines are progressively focused into a narrow strahl at heliospheric distances r ≲ 1 au, while at r ≳ 1 au the width of the strahl saturates due to Coulomb collisions and becomes independent of the distance. Our theory of the strahl broadening does not contain free parameters and it agrees with Wind observations of the strahl width at 1 au to within |$$15\hbox{--}20{{\ \rm per\ cent}}$$|, for widths that are resolvable by the instrument. This indicates that Coulomb scattering, rather than anomalous turbulent diffusion, plays a dominant role in strahl formation in these observations. We further propose that the halo electron population at energies |$$K \lesssim 200\, \, {\rm eV}$$| may be composed of electrons that ran away from the Sun as an electron strahl, but later ended up on magnetic field lines leading them back to the Sun. The halo electrons are therefore not produced locally; rather, they are the fast electrons trapped by magnetic field lines on global heliospheric scales. Through the effects of magnetic defocusing and Coulomb pitch-angle scattering, a narrow source distribution at large heliocentric distances appears nearly isotropic at distances ~1 au. At larger energies |$$K \gtrsim 200\, \, {\rm eV}$$|, however, our theory indicates that the scattering provided by Coulomb collisions alone is not sufficient to isotropize a narrow sunward-propagating electron beam.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3]
  1. Department of Physics, University of Wisconsin – Madison, 1150 University Avenue, Madison, WI 53706, USA
  2. Department of Physics, University of Wisconsin – Madison, 1150 University Avenue, Madison, WI 53706, USA, Space Science Institute, Boulder, CO 80301, USA
  3. Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA, Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Publication Date:
Research Org.:
Univ. of Kansas, Lawrence, KS (United States); Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF); National Aeronautics and Space Administration (NASA)
OSTI Identifier:
1492907
Alternate Identifier(s):
OSTI ID: 1612501
Grant/Contract Number:  
SC0018266; SC0016368; SC0019474; PHY-1707272; 80NSSC18K0640
Resource Type:
Published Article
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Name: Monthly Notices of the Royal Astronomical Society Journal Volume: 484 Journal Issue: 2; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United Kingdom
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; astronomy & astrophysics; plasmas, Sun: heliosphere, solar wind

Citation Formats

Horaites, Konstantinos, Boldyrev, Stanislav, and Medvedev, Mikhail V. Electron strahl and halo formation in the solar wind. United Kingdom: N. p., 2018. Web. doi:10.1093/mnras/sty3504.
Horaites, Konstantinos, Boldyrev, Stanislav, & Medvedev, Mikhail V. Electron strahl and halo formation in the solar wind. United Kingdom. https://doi.org/10.1093/mnras/sty3504
Horaites, Konstantinos, Boldyrev, Stanislav, and Medvedev, Mikhail V. Sat . "Electron strahl and halo formation in the solar wind". United Kingdom. https://doi.org/10.1093/mnras/sty3504.
@article{osti_1492907,
title = {Electron strahl and halo formation in the solar wind},
author = {Horaites, Konstantinos and Boldyrev, Stanislav and Medvedev, Mikhail V.},
abstractNote = {Here, we propose a kinetic model describing the formation of the strahl and halo electron populations in the solar wind. We demonstrate that the suprathermal electrons propagating from the Sun along the Parker-spiral magnetic field lines are progressively focused into a narrow strahl at heliospheric distances r ≲ 1 au, while at r ≳ 1 au the width of the strahl saturates due to Coulomb collisions and becomes independent of the distance. Our theory of the strahl broadening does not contain free parameters and it agrees with Wind observations of the strahl width at 1 au to within |$15\hbox{--}20{{\ \rm per\ cent}}$|, for widths that are resolvable by the instrument. This indicates that Coulomb scattering, rather than anomalous turbulent diffusion, plays a dominant role in strahl formation in these observations. We further propose that the halo electron population at energies |$K \lesssim 200\, \, {\rm eV}$| may be composed of electrons that ran away from the Sun as an electron strahl, but later ended up on magnetic field lines leading them back to the Sun. The halo electrons are therefore not produced locally; rather, they are the fast electrons trapped by magnetic field lines on global heliospheric scales. Through the effects of magnetic defocusing and Coulomb pitch-angle scattering, a narrow source distribution at large heliocentric distances appears nearly isotropic at distances ~1 au. At larger energies |$K \gtrsim 200\, \, {\rm eV}$|, however, our theory indicates that the scattering provided by Coulomb collisions alone is not sufficient to isotropize a narrow sunward-propagating electron beam.},
doi = {10.1093/mnras/sty3504},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 2,
volume = 484,
place = {United Kingdom},
year = {Sat Dec 29 00:00:00 EST 2018},
month = {Sat Dec 29 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1093/mnras/sty3504

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Kinetic electrons in high-speed solar wind streams: Formation of high-energy tails
journal, March 1997

  • Lie-Svendsen, Øystein; Hansteen, Viggo H.; Leer, Egil
  • Journal of Geophysical Research: Space Physics, Vol. 102, Issue A3
  • DOI: 10.1029/96JA03632

The whistler heat flux instability: Threshold conditions in the solar wind
journal, January 1994

  • Gary, S. Peter; Scime, Earl E.; Phillips, John L.
  • Journal of Geophysical Research, Vol. 99, Issue A12
  • DOI: 10.1029/94JA02067

Characteristics of electron velocity distribution functions in the solar wind derived from the Helios Plasma Experiment
journal, January 1987

  • Pilipp, W. G.; Miggenrieder, H.; Montgomery, M. D.
  • Journal of Geophysical Research, Vol. 92, Issue A2
  • DOI: 10.1029/JA092iA02p01075

Electron Transport in the fast Solar wind
journal, June 2012


Radial dependence of solar wind parameters in the ecliptic (1.1 R ??61 AU)
journal, November 1996


Counterstreaming suprathermal electron events upstream of corotating shocks in the solar wind beyond ∼2 Au: Ulysses
journal, November 1993

  • Gosling, J. T.; Bame, S. J.; Feldman, W. C.
  • Geophysical Research Letters, Vol. 20, Issue 21
  • DOI: 10.1029/93GL02489

Electron velocity distribution functions from the solar wind to the corona
journal, August 1999

  • Pierrard, V.; Maksimovic, M.; Lemaire, J.
  • Journal of Geophysical Research: Space Physics, Vol. 104, Issue A8
  • DOI: 10.1029/1999JA900169

The evolution of solar wind strahl with heliospheric distance: HELIOSPHERIC STRAHL EVOLUTION
journal, April 2017

  • Graham, G. A.; Rae, I. J.; Owen, C. J.
  • Journal of Geophysical Research: Space Physics, Vol. 122, Issue 4
  • DOI: 10.1002/2016JA023656

Radial evolution of nonthermal electron populations in the low-latitude solar wind: Helios, Cluster, and Ulysses Observations: NONTHERMAL ELECTRONS IN SOLAR WIND
journal, May 2009

  • Štverák, Štěpán; Maksimovic, Milan; Trávníček, Pavel M.
  • Journal of Geophysical Research: Space Physics, Vol. 114, Issue A5
  • DOI: 10.1029/2008JA013883

Invariant Kappa Distribution in Space Plasmas out of Equilibrium
journal, October 2011


Investigating the Effect of IMF Path Length on Pitch-angle Scattering of Strahl within 1 au
journal, March 2018


Collisional modification to the exospheric theory of solar wind halo electron pitch angle distributions
journal, January 1983

  • Lemons, Don S.; Feldman, William C.
  • Journal of Geophysical Research, Vol. 88, Issue A9
  • DOI: 10.1029/JA088iA09p06881

SWE, a comprehensive plasma instrument for the WIND spacecraft
journal, February 1995

  • Ogilvie, K. W.; Chornay, D. J.; Fritzenreiter, R. J.
  • Space Science Reviews, Vol. 71, Issue 1-4
  • DOI: 10.1007/BF00751326

Electron heat Conduction in the Solar Wind: Transition from Spitzer-HÄRm to the Collisionless Limit
journal, May 2013


Magnetic Pumping as a Source of Particle Heating and Power-law Distributions in the Solar Wind
journal, November 2017


Electron Properties and Coulomb Collisions in the Solar Wind at 1 AU: Wind Observations
journal, March 2003

  • Salem, C.; Hubert, D.; Lacombe, C.
  • The Astrophysical Journal, Vol. 585, Issue 2
  • DOI: 10.1086/346185

A theory of local and global processes which affect solar wind electrons 2. Experimental support
journal, January 1979

  • Scudder, Jack D.; Olbert, Stanislaw
  • Journal of Geophysical Research, Vol. 84, Issue A11
  • DOI: 10.1029/JA084iA11p06603

Solar wind electrons
journal, November 1975

  • Feldman, W. C.; Asbridge, J. R.; Bame, S. J.
  • Journal of Geophysical Research, Vol. 80, Issue 31
  • DOI: 10.1029/JA080i031p04181

Scattering of suprathermal electrons in the solar wind: ACE observations: SCATTERING OF SUPRATHERMAL ELECTRONS
journal, April 2007

  • Pagel, Christina; Gary, S. Peter; de Koning, Curt A.
  • Journal of Geophysical Research: Space Physics, Vol. 112, Issue A4
  • DOI: 10.1029/2006JA011967

Self-consistent model of solar wind electrons
journal, December 2001

  • Pierrard, V.; Maksimovic, M.; Lemaire, J.
  • Journal of Geophysical Research: Space Physics, Vol. 106, Issue A12
  • DOI: 10.1029/2001JA900133

Rotation of Doppler features in the solar photosphere
journal, March 1990

  • Snodgrass, Herschel B.; Ulrich, Roger K.
  • The Astrophysical Journal, Vol. 351
  • DOI: 10.1086/168467

Stability analysis of core–strahl electron distributions in the solar wind
journal, July 2018

  • Horaites, Konstantinos; Astfalk, Patrick; Boldyrev, Stanislav
  • Monthly Notices of the Royal Astronomical Society, Vol. 480, Issue 2
  • DOI: 10.1093/mnras/sty1808

Solar wind electron halo depletions at 90° pitch angle
journal, November 2001

  • Gosling, J. T.; Skoug, R. M.; Feldman, W. C.
  • Geophysical Research Letters, Vol. 28, Issue 22
  • DOI: 10.1029/2001GL013758

On the Competition Between Radial Expansion and Coulomb Collisions in Shaping the Electron Velocity Distribution Function: Kinetic Simulations
journal, November 2012


The WIND magnetic field investigation
journal, February 1995

  • Lepping, R. P.; Acũna, M. H.; Burlaga, L. F.
  • Space Science Reviews, Vol. 71, Issue 1-4
  • DOI: 10.1007/BF00751330

Kinetic theory and fast wind observations of the electron strahl
journal, October 2017

  • Horaites, Konstantinos; Boldyrev, Stanislav; Wilson, Lynn B.
  • Monthly Notices of the Royal Astronomical Society, Vol. 474, Issue 1
  • DOI: 10.1093/mnras/stx2555

Bidirectional Energy Cascades and the Origin of Kinetic Alfvénic and Whistler Turbulence in the Solar Wind
journal, February 2014


Electrons in the low-density solar wind
journal, December 2000

  • Ogilvie, Keith W.; Fitzenreiter, Richard; Desch, Michael
  • Journal of Geophysical Research: Space Physics, Vol. 105, Issue A12
  • DOI: 10.1029/2000JA000131

Experimental Determination of Whistler wave Dispersion Relation in the Solar wind
journal, September 2016


WHISTLER MODE WAVES AND THE ELECTRON HEAT FLUX IN THE SOLAR WIND: CLUSTER OBSERVATIONS
journal, October 2014


Generation of Suprathermal Electrons by Resonant Wave‐Particle Interaction in the Solar Corona and Wind
journal, August 2003

  • Vocks, C.; Mann, G.
  • The Astrophysical Journal, Vol. 593, Issue 2
  • DOI: 10.1086/376682

Electron Halo and Strahl Formation in the Solar Wind by Resonant Interaction with Whistler Waves
journal, July 2005

  • Vocks, C.; Salem, C.; Lin, R. P.
  • The Astrophysical Journal, Vol. 627, Issue 1
  • DOI: 10.1086/430119

The Origin of Non-Maxwellian Solar wind Electron Velocity Distribution Function: Connection to Nanoflares in the Solar Corona
journal, October 2014


The Electron Temperature and Anisotropy in the Solar Wind. Comparison of the Core and Halo Populations
journal, August 2016


Characteristic electron variations across simple high-speed solar wind streams
journal, January 1978

  • Feldman, W. C.; Asbridge, J. R.; Bame, S. J.
  • Journal of Geophysical Research, Vol. 83, Issue A11
  • DOI: 10.1029/JA083iA11p05285

Heat flux instabilities in the solar wind
journal, November 1975

  • Gary, S. Peter; Feldman, W. C.; Forslund, D. W.
  • Journal of Geophysical Research, Vol. 80, Issue 31
  • DOI: 10.1029/JA080i031p04197

Fokker-Planck equation for moderately coupled plasmas
journal, May 1993


Electromagnetic waves and electron anisotropies downstream of supercritical interplanetary shocks: LOWER HYBRID AND WHISTLER WAVES
journal, January 2013

  • Wilson, L. B.; Koval, A.; Szabo, A.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 1
  • DOI: 10.1029/2012JA018167

Magnetohydrodynamic Turbulence
book, August 2009