DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cloud-Resolving Model Intercomparison of an MC3E Squall Line Case: Part II. Stratiform Precipitation Properties

Abstract

In this second part of a cloud microphysics scheme intercomparison study, we focus on biases and variabilities of stratiform precipitation properties for a midlatitude squall line event simulated with a cloud-resolving model implemented with eight cloud microphysics schemes. Most of the microphysics schemes underestimate total stratiform precipitation, mainly due to underestimation of stratiform precipitation area. All schemes underestimate the frequency of moderate stratiform rain rates (2–6 mm/hr), which may result from low-biased ice number and mass concentrations for 0.2–2-mm diameter particles in the stratiform ice region. Most simulations overestimate ice water content (IWC) at altitudes above 7 km for temperatures colder than -20 °C but produce a decrease of IWC approaching the melting level, which is opposite to the trend shown by in situ observations. This leads to general underestimations of stratiform IWC below 5-km altitude and rainwater content above 1-km altitude for a given rain rate. Stratiform precipitation area positively correlates with the convective condensate detrainment flux but is modulated by hydrometeor type, size, and fall speed. Stratiform precipitation area also changes by up to 17%–25% through alterations of the lateral boundary condition forcing frequency. Stratiform precipitation, rain rate, and area across the simulations vary by a factor ofmore » 1.5. This large variability is primarily a result of variability in the stratiform downward ice mass flux, which is highly correlated with convective condensate horizontal detrainment strength. The variability of simulated local microphysical processes in the stratiform region plays a secondary role in explaining variability in simulated stratiform rainfall properties.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [9]; ORCiD logo [10];  [11];  [9]; ORCiD logo [4]
  1. School of Atmospheric Sciences, Nanjing University, Nanjing China, Pacific Northwest National Laboratory, Richland WA USA
  2. Pacific Northwest National Laboratory, Richland WA USA
  3. Pacific Northwest National Laboratory, Richland WA USA, Department of Atmospheric Sciences, University of Utah, Salt Lake City UT USA
  4. National Center for Atmospheric Research, Boulder CO USA
  5. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder and NOAA/Earth System Research Laboratory, Boulder CO USA
  6. School of Atmospheric Sciences, Nanjing University, Nanjing China
  7. Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson Arizona USA
  8. Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton NY USA
  9. The Institute of the Earth Science, The Hebrew University of Jerusalem, Jerusalem Israel
  10. NOAA/OAR/National Severe Storms Laboratory, Norman OK USA
  11. Meteorological Research Division, Environment and Climate Change Canada, Dorval Canada
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Univ. of Utah, Salt Lake City, UT (United States); National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Univ. of Arizona, Tucson, AZ (United States); Nanjing Univ. (China); Hebrew Univ. of Jerusalem (Israel)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Science Foundation (NSF); National Basic Research Program of China; National Natural Science Foundation of China (NSFC); Israel Science Foundation
OSTI Identifier:
1492883
Alternate Identifier(s):
OSTI ID: 1492884; OSTI ID: 1501558
Report Number(s):
BNL-211404-2019-JAAM
Journal ID: ISSN 2169-897X
Grant/Contract Number:  
SC0012704; AC06-76RL01830; AC02-05CH11231; SC0008678; SC0008648; SC0016476; SC0017015; SC0008811; 2013CB430105; 41575130; 41775132; 2027/17
Resource Type:
Published Article
Journal Name:
Journal of Geophysical Research: Atmospheres
Additional Journal Information:
Journal Name: Journal of Geophysical Research: Atmospheres Journal Volume: 124 Journal Issue: 2; Journal ID: ISSN 2169-897X
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; model intercomparison; squall line; stratiform precipitation; microphysics parameterization

Citation Formats

Han, Bin, Fan, Jiwen, Varble, Adam, Morrison, Hugh, Williams, Christopher R., Chen, Baojun, Dong, Xiquan, Giangrande, Scott E., Khain, Alexander, Mansell, Edward, Milbrandt, Jason A., Shpund, Jacob, and Thompson, Gregory. Cloud-Resolving Model Intercomparison of an MC3E Squall Line Case: Part II. Stratiform Precipitation Properties. United States: N. p., 2019. Web. doi:10.1029/2018JD029596.
Han, Bin, Fan, Jiwen, Varble, Adam, Morrison, Hugh, Williams, Christopher R., Chen, Baojun, Dong, Xiquan, Giangrande, Scott E., Khain, Alexander, Mansell, Edward, Milbrandt, Jason A., Shpund, Jacob, & Thompson, Gregory. Cloud-Resolving Model Intercomparison of an MC3E Squall Line Case: Part II. Stratiform Precipitation Properties. United States. https://doi.org/10.1029/2018JD029596
Han, Bin, Fan, Jiwen, Varble, Adam, Morrison, Hugh, Williams, Christopher R., Chen, Baojun, Dong, Xiquan, Giangrande, Scott E., Khain, Alexander, Mansell, Edward, Milbrandt, Jason A., Shpund, Jacob, and Thompson, Gregory. Tue . "Cloud-Resolving Model Intercomparison of an MC3E Squall Line Case: Part II. Stratiform Precipitation Properties". United States. https://doi.org/10.1029/2018JD029596.
@article{osti_1492883,
title = {Cloud-Resolving Model Intercomparison of an MC3E Squall Line Case: Part II. Stratiform Precipitation Properties},
author = {Han, Bin and Fan, Jiwen and Varble, Adam and Morrison, Hugh and Williams, Christopher R. and Chen, Baojun and Dong, Xiquan and Giangrande, Scott E. and Khain, Alexander and Mansell, Edward and Milbrandt, Jason A. and Shpund, Jacob and Thompson, Gregory},
abstractNote = {In this second part of a cloud microphysics scheme intercomparison study, we focus on biases and variabilities of stratiform precipitation properties for a midlatitude squall line event simulated with a cloud-resolving model implemented with eight cloud microphysics schemes. Most of the microphysics schemes underestimate total stratiform precipitation, mainly due to underestimation of stratiform precipitation area. All schemes underestimate the frequency of moderate stratiform rain rates (2–6 mm/hr), which may result from low-biased ice number and mass concentrations for 0.2–2-mm diameter particles in the stratiform ice region. Most simulations overestimate ice water content (IWC) at altitudes above 7 km for temperatures colder than -20 °C but produce a decrease of IWC approaching the melting level, which is opposite to the trend shown by in situ observations. This leads to general underestimations of stratiform IWC below 5-km altitude and rainwater content above 1-km altitude for a given rain rate. Stratiform precipitation area positively correlates with the convective condensate detrainment flux but is modulated by hydrometeor type, size, and fall speed. Stratiform precipitation area also changes by up to 17%–25% through alterations of the lateral boundary condition forcing frequency. Stratiform precipitation, rain rate, and area across the simulations vary by a factor of 1.5. This large variability is primarily a result of variability in the stratiform downward ice mass flux, which is highly correlated with convective condensate horizontal detrainment strength. The variability of simulated local microphysical processes in the stratiform region plays a secondary role in explaining variability in simulated stratiform rainfall properties.},
doi = {10.1029/2018JD029596},
journal = {Journal of Geophysical Research: Atmospheres},
number = 2,
volume = 124,
place = {United States},
year = {Tue Jan 29 00:00:00 EST 2019},
month = {Tue Jan 29 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1029/2018JD029596

Citation Metrics:
Cited by: 40 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Estimation of Rainfall Based on the Results of Polarimetric Echo Classification
journal, September 2008

  • Giangrande, Scott E.; Ryzhkov, Alexander V.
  • Journal of Applied Meteorology and Climatology, Vol. 47, Issue 9
  • DOI: 10.1175/2008JAMC1753.1

Impacts of Polarimetric Radar Observations on Hydrologic Simulation
journal, June 2010

  • Gourley, Jonathan J.; Giangrande, Scott E.; Hong, Yang
  • Journal of Hydrometeorology, Vol. 11, Issue 3
  • DOI: 10.1175/2010JHM1218.1

Vertical Air Motion Retrieved from Dual-Frequency Profiler Observations
journal, October 2012


Drop size distribution comparisons between Parsivel and 2-D video disdrometers
journal, January 2011


A Field Study of Footprint-Scale Variability of Raindrop Size Distribution
journal, December 2017

  • Tokay, Ali; D’Adderio, Leo Pio; Porcù, Federico
  • Journal of Hydrometeorology, Vol. 18, Issue 12
  • DOI: 10.1175/JHM-D-17-0003.1

National Mosaic and Multi-Sensor QPE (NMQ) System: Description, Results, and Future Plans
journal, October 2011

  • Zhang, Jian; Howard, Kenneth; Langston, Carrie
  • Bulletin of the American Meteorological Society, Vol. 92, Issue 10
  • DOI: 10.1175/2011BAMS-D-11-00047.1

Microphysical and Thermodynamic Structure and Evolution of the Trailing Stratiform Regions of Mesoscale Convective Systems during BAMEX. Part I: Observations
journal, April 2009

  • Smith, Andrea M.; McFarquhar, Greg M.; Rauber, Robert M.
  • Monthly Weather Review, Vol. 137, Issue 4
  • DOI: 10.1175/2008MWR2504.1

The Terminal Velocity of fall for Water Droplets in Stagnant air
journal, August 1949


A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description
journal, June 2005

  • Morrison, H.; Curry, J. A.; Khvorostyanov, V. I.
  • Journal of the Atmospheric Sciences, Vol. 62, Issue 6
  • DOI: 10.1175/JAS3446.1

Development and Structure of Winter Monsoon Cloud Clusters On 10 December 1978
journal, March 1984


Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests
journal, January 2015

  • Morrison, Hugh; Milbrandt, Jason A.
  • Journal of the Atmospheric Sciences, Vol. 72, Issue 1
  • DOI: 10.1175/JAS-D-14-0065.1

Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis
journal, February 2004


Investigation of ice cloud microphysical properties of DCSs using aircraft in situ measurements during MC3E over the ARM SGP site: Microphysical properties of DCS
journal, April 2015

  • Wang, Jingyu; Dong, Xiquan; Xi, Baike
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 8
  • DOI: 10.1002/2014JD022795

Notes on state-of-the-art investigations of aerosol effects on precipitation: a critical review
journal, January 2009


A Summary of Convective-Core Vertical Velocity Properties Using ARM UHF Wind Profilers in Oklahoma
journal, October 2013

  • Giangrande, Scott E.; Collis, Scott; Straka, Jerry
  • Journal of Applied Meteorology and Climatology, Vol. 52, Issue 10
  • DOI: 10.1175/JAMC-D-12-0185.1

A Diagnostic Modelling Study of the Trailing Stratiform Region of a Midlatitude Squall Line
journal, September 1987


Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics
journal, January 2010

  • Mansell, Edward R.; Ziegler, Conrad L.; Bruning, Eric C.
  • Journal of the Atmospheric Sciences, Vol. 67, Issue 1
  • DOI: 10.1175/2009JAS2965.1

A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape Parameter
journal, September 2005

  • Milbrandt, J. A.; Yau, M. K.
  • Journal of the Atmospheric Sciences, Vol. 62, Issue 9
  • DOI: 10.1175/JAS3534.1

Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization
journal, December 2008

  • Thompson, Gregory; Field, Paul R.; Rasmussen, Roy M.
  • Monthly Weather Review, Vol. 136, Issue 12
  • DOI: 10.1175/2008MWR2387.1

The microphysical contributions to and evolution of latent heating profiles in two MC3E MCSs: LATENT HEATING PROFILES IN TWO MC3E MCSS
journal, July 2016

  • Marinescu, P. J.; van den Heever, S. C.; Saleeby, S. M.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 13
  • DOI: 10.1002/2016JD024762

Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E
journal, January 2017

  • North, Kirk W.; Oue, Mariko; Kollias, Pavlos
  • Atmospheric Measurement Techniques, Vol. 10, Issue 8
  • DOI: 10.5194/amt-10-2785-2017

Factors Responsible for Precipitation Efficiencies in Midlatitude and Tropical Squall Simulations
journal, October 1996


An intercomparison of cloud-resolving models with the Atmospheric Radiation Measurement summer 1997 Intensive Observation Period data
journal, January 2002

  • Xu, Kuan-Man; Cederwall, Richard T.; Donner, Leo J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 128, Issue 580
  • DOI: 10.1256/003590002321042117

Mesoscale convective systems
journal, January 2004


Experiences with 0–36-h Explicit Convective Forecasts with the WRF-ARW Model
journal, June 2008

  • Weisman, Morris L.; Davis, Christopher; Wang, Wei
  • Weather and Forecasting, Vol. 23, Issue 3
  • DOI: 10.1175/2007WAF2007005.1

Modeling of Convective–Stratiform Precipitation Processes: Sensitivity to Partitioning Methods
journal, April 2003


Improvements to the snow melting process in a partially double moment microphysics parameterization
journal, May 2017

  • Brown, Bonnie R.; Bell, Michael M.; Thompson, Gregory
  • Journal of Advances in Modeling Earth Systems, Vol. 9, Issue 2
  • DOI: 10.1002/2016MS000892

Improved Airborne Hot-Wire Measurements of Ice Water Content in Clouds
journal, September 2013

  • Korolev, A.; Strapp, J. W.; Isaac, G. A.
  • Journal of Atmospheric and Oceanic Technology, Vol. 30, Issue 9
  • DOI: 10.1175/JTECH-D-13-00007.1

Evaluation of the Accuracy of PMS Optical Array Probes
journal, June 1998


Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure
journal, January 2011

  • Varble, Adam; Fridlind, Ann M.; Zipser, Edward J.
  • Journal of Geophysical Research, Vol. 116, Issue D12
  • DOI: 10.1029/2010JD015180

Comparison of Raindrop Size Distribution Measurements by Collocated Disdrometers
journal, August 2013

  • Tokay, Ali; Petersen, Walter A.; Gatlin, Patrick
  • Journal of Atmospheric and Oceanic Technology, Vol. 30, Issue 8
  • DOI: 10.1175/JTECH-D-12-00163.1

Evaluating NEXRAD Multisensor Precipitation Estimates for Operational Hydrologic Forecasting
journal, June 2000


The Role of Cloud Microphysics Parameterization in the Simulation of Mesoscale Convective System Clouds and Precipitation in the Tropical Western Pacific
journal, April 2013

  • Van Weverberg, K.; Vogelmann, A. M.; Lin, W.
  • Journal of the Atmospheric Sciences, Vol. 70, Issue 4
  • DOI: 10.1175/JAS-D-12-0104.1

The Midlatitude Continental Convective Clouds Experiment (MC3E)
journal, September 2016

  • Jensen, M. P.; Petersen, W. A.; Bansemer, A.
  • Bulletin of the American Meteorological Society, Vol. 97, Issue 9
  • DOI: 10.1175/BAMS-D-14-00228.1

Organizational Modes of Midlatitude Mesoscale Convective Systems
journal, October 2000


Predicting the Snow-to-Liquid Ratio of Surface Precipitation Using a Bulk Microphysics Scheme
journal, August 2012


Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data
journal, September 1995


Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds
journal, November 2013

  • Fan, J.; Leung, L. R.; Rosenfeld, D.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 48
  • DOI: 10.1073/pnas.1316830110

Raindrop size distribution variability estimated using ensemble statistics
journal, January 2009


Derivation of aerosol profiles for MC3E convection studies and use in simulations of the 20 May squall line case
journal, January 2017

  • Fridlind, Ann M.; Li, Xiaowen; Wu, Di
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 9
  • DOI: 10.5194/acp-17-5947-2017

Precipitation Estimation from the ARM Distributed Radar Network during the MC3E Campaign
journal, September 2014

  • Giangrande, Scott E.; Collis, Scott; Theisen, Adam K.
  • Journal of Applied Meteorology and Climatology, Vol. 53, Issue 9
  • DOI: 10.1175/JAMC-D-13-0321.1

Cloud-Resolving Modeling of Deep Convection during KWAJEX. Part I: Comparison to TRMM Satellite and Ground-Based Radar Observations
journal, July 2008

  • Li, Yaping; Zipser, Edward J.; Krueger, Steven K.
  • Monthly Weather Review, Vol. 136, Issue 7
  • DOI: 10.1175/2007MWR2258.1

Rainfall Estimation with a Polarimetric Prototype of WSR-88D
journal, April 2005

  • Ryzhkov, Alexander V.; Giangrande, Scott E.; Schuur, Terry J.
  • Journal of Applied Meteorology, Vol. 44, Issue 4
  • DOI: 10.1175/JAM2213.1

Long-Term Evaluation of Temperature Profiles Measured by an Operational Raman Lidar
journal, August 2013

  • Newsom, Rob K.; Turner, David D.; Goldsmith, John E. M.
  • Journal of Atmospheric and Oceanic Technology, Vol. 30, Issue 8
  • DOI: 10.1175/JTECH-D-12-00138.1

Kinematic and Precipitation Structure of the 10–11 June 1985 Squall Line
journal, December 1991


Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization: BIN VS BULK
journal, May 2015

  • Khain, A. P.; Beheng, K. D.; Heymsfield, A.
  • Reviews of Geophysics, Vol. 53, Issue 2
  • DOI: 10.1002/2014RG000468

Reflectivity and Liquid Water Content Vertical Decomposition Diagrams to Diagnose Vertical Evolution of Raindrop Size Distributions
journal, March 2016


Comparison of Ice-Phase Microphysical Parameterization Schemes Using Numerical Simulations of Tropical Convection
journal, July 1991

  • McCumber, Michale; Tao, Wei-Kuo; Simpson, Joanne
  • Journal of Applied Meteorology, Vol. 30, Issue 7
  • DOI: 10.1175/1520-0450-30.7.985

History of Operational Use of Weather Radar by U.S. Weather Services. Part II: Development of Operational Doppler Weather Radars
journal, June 1998


Simulating convective events using a high-resolution mesoscale model
journal, June 2000

  • Bernardet, Lígia R.; Grasso, Lewis D.; Nachamkin, Jason E.
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D11
  • DOI: 10.1029/2000JD900100

Improving Simulations of Convective Systems from TRMM LBA: Easterly and Westerly Regimes
journal, April 2007

  • Lang, S.; Tao, W-K.; Simpson, J.
  • Journal of the Atmospheric Sciences, Vol. 64, Issue 4
  • DOI: 10.1175/JAS3879.1

Sedimentation-Induced Errors in Bulk Microphysics Schemes
journal, December 2010

  • Milbrandt, J. A.; McTaggart-Cowan, R.
  • Journal of the Atmospheric Sciences, Vol. 67, Issue 12
  • DOI: 10.1175/2010JAS3541.1

The 2D-Video-Distrometer
book, January 2008

  • Schönhuber, Michael; Lammer, Günter; Randeu, Walter L.
  • Precipitation: Advances in Measurement, Estimation and Prediction
  • DOI: 10.1007/978-3-540-77655-0_1

Assessment of SCaMPR and NEXRAD Q2 Precipitation Estimates Using Oklahoma Mesonet Observations
journal, December 2014

  • Stenz, Ronald; Dong, Xiquan; Xi, Baike
  • Journal of Hydrometeorology, Vol. 15, Issue 6
  • DOI: 10.1175/JHM-D-13-0199.1

Impacts of microphysical scheme on convective and stratiform characteristics in two high precipitation squall line events: MICROPHYSICAL IMPACTS ON SQUALL LINE
journal, October 2013

  • Wu, Di; Dong, Xiquan; Xi, Baike
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 19
  • DOI: 10.1002/jgrd.50798

Sensitivity of a Simulated Squall Line to Horizontal Resolution and Parameterization of Microphysics
journal, January 2012


Cloud-Resolving Model Simulations of KWAJEX: Model Sensitivities and Comparisons with Satellite and Radar Observations
journal, May 2007

  • Blossey, Peter N.; Bretherton, Christopher S.; Cetrone, Jasmine
  • Journal of the Atmospheric Sciences, Vol. 64, Issue 5
  • DOI: 10.1175/JAS3982.1

Why does radar reflectivity tend to increase downward toward the ocean surface, but decrease downward toward the land surface?: VARIATION OF RADAR REFLECTIVITY SLOPE
journal, January 2013

  • Liu, Chuntao; Zipser, Edward J.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 1
  • DOI: 10.1029/2012JD018134

Structure and Dynamics of a Tropical Squall–Line System
journal, December 1977


Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part II: Case Study Comparisons with Observations and Other Schemes
journal, January 2015

  • Morrison, Hugh; Milbrandt, Jason A.; Bryan, George H.
  • Journal of the Atmospheric Sciences, Vol. 72, Issue 1
  • DOI: 10.1175/JAS-D-14-0066.1

The Arm Climate Research Facility: A Review of Structure and Capabilities
journal, March 2013

  • Mather, James H.; Voyles, Jimmy W.
  • Bulletin of the American Meteorological Society, Vol. 94, Issue 3
  • DOI: 10.1175/BAMS-D-11-00218.1

A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description
journal, September 2005

  • Milbrandt, J. A.; Yau, M. K.
  • Journal of the Atmospheric Sciences, Vol. 62, Issue 9
  • DOI: 10.1175/JAS3535.1

Dual-Doppler Radar Analysis of a Midlatitude Squall Line with a Trailing Region of Stratiform Rain
journal, August 1987


Cloud‐resolving model intercomparison of an MC3E squall line case: Part I—Convective updrafts
journal, September 2017

  • Fan, Jiwen; Han, Bin; Varble, Adam
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 17
  • DOI: 10.1002/2017JD026622

Sensitivity of a Cloud-Resolving Model to Bulk and Explicit Bin Microphysical Schemes. Part I: Comparisons
journal, January 2009

  • Li, Xiaowen; Tao, Wei-Kuo; Khain, Alexander P.
  • Journal of the Atmospheric Sciences, Vol. 66, Issue 1
  • DOI: 10.1175/2008JAS2646.1

Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties: Eval. of TWP-ICE CRMs and LAMs Pt. 1
journal, December 2014

  • Varble, Adam; Zipser, Edward J.; Fridlind, Ann M.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 24
  • DOI: 10.1002/2013JD021371

Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 2. Precipitation microphysics: Eval. of TWP-ICE CRMs and LAMs Pt. 2
journal, December 2014

  • Varble, Adam; Zipser, Edward J.; Fridlind, Ann M.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 24
  • DOI: 10.1002/2013JD021372

Controls on phase composition and ice water content in a convection-permitting model simulation of a tropical mesoscale convective system
journal, January 2016

  • Franklin, Charmaine N.; Protat, Alain; Leroy, Delphine
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 14
  • DOI: 10.5194/acp-16-8767-2016

Heating, Moisture, and Water Budgets of Tropical and Midlatitude Squall Lines: Comparisons and Sensitivity to Longwave Radiation
journal, March 1993


Numerical Simulation of a Midlatitude Squall Line in Two Dimensions
journal, December 1988


Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection: AEROSOL-DEEP CONVECTION INTERACTIONS
journal, May 2012

  • Fan, Jiwen; Rosenfeld, Daniel; Ding, Yanni
  • Geophysical Research Letters, Vol. 39, Issue 9
  • DOI: 10.1029/2012GL051851

Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges
journal, November 2016

  • Fan, Jiwen; Wang, Yuan; Rosenfeld, Daniel
  • Journal of the Atmospheric Sciences, Vol. 73, Issue 11
  • DOI: 10.1175/JAS-D-16-0037.1

Polarimetric radar and aircraft observations of saggy bright bands during MC3E: SAGGY BRIGHT BANDS
journal, April 2016

  • Kumjian, Matthew R.; Mishra, Subashree; Giangrande, Scott E.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 7
  • DOI: 10.1002/2015JD024446

A ubiquitous ice size bias in simulations of tropical deep convection
journal, January 2017

  • Stanford, McKenna W.; Varble, Adam; Zipser, Ed
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 15
  • DOI: 10.5194/acp-17-9599-2017

Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements: Convective Cloud Microphysical Retrieval
journal, September 2016

  • Tian, Jingjing; Dong, Xiquan; Xi, Baike
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 18
  • DOI: 10.1002/2015JD024686