skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An ultrafast symmetry switch in a Weyl semimetal

Abstract

Topological quantum materials exhibit fascinating properties with important applications for dissipationless electronics and fault-tolerant quantum computers. Manipulating the topological invariants in these materials would allow the development of topological switching applications analogous to switching of transistors. Lattice strain provides the most natural means of tuning these topological invariants because it directly modifies the electron–ion interactions and potentially alters the underlying crystalline symmetry on which the topological properties depend. However, conventional means of applying strain through heteroepitaxial lattice mismatch and dislocations are not extendable to controllable time-varying protocols, which are required in transistors. Integration into a functional device requires the ability to go beyond the robust, topologically protected properties of materials and to manipulate the topology at high speeds. Here in this paper we use crystallographic measurements by relativistic electron diffraction to demonstrate that terahertz light pulses can be used to induce terahertz-frequency interlayer shear strain with large strain amplitude in the Weyl semimetal WTe2, leading to a topologically distinct metastable phase. Separate nonlinear optical measurements indicate that this transition is associated with a symmetry change to a centrosymmetric, topologically trivial phase. We further show that such shear strain provides an ultrafast, energy-efficient way of inducing robust, well separated Weyl pointsmore » or of annihilating all Weyl points of opposite chirality. This work demonstrates possibilities for ultrafast manipulation of the topological properties of solids and for the development of a topological switch operating at terahertz frequencies.« less

Authors:
 [1];  [2];  [3];  [3];  [4];  [5];  [4];  [6];  [4];  [4];  [4];  [7];  [8];  [9];  [8];  [8];  [9];  [8];  [1];  [10] more »;  [4];  [11] « less
  1. Stanford Univ., CA (United States). Geballe Lab. for Advanced Materials; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
  2. Stanford Univ., CA (United States). Dept. of Chemistry
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE)
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  7. Stanford Univ., CA (United States). Dept. of Materials Science and Engineering
  8. Columbia Univ., New York, NY (United States). Dept. of Mechanical Engineering
  9. Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab) and Dept. of Physics
  10. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Stanford Univ., CA (United States). Dept. of Applied Physics
  11. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Stanford Univ., CA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1492730
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 565; Journal Issue: 7737; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Sie, Edbert J., Nyby, Clara M., Pemmaraju, C. D., Park, Su Ji, Shen, Xiaozhe, Yang, Jie, Hoffmann, Matthias C., Ofori-Okai, B. K., Li, Renkai, Reid, Alexander H., Weathersby, Stephen, Mannebach, Ehren, Finney, Nathan, Rhodes, Daniel, Chenet, Daniel, Antony, Abhinandan, Balicas, Luis, Hone, James, Devereaux, Thomas P., Heinz, Tony F., Wang, Xijie, and Lindenberg, Aaron M. An ultrafast symmetry switch in a Weyl semimetal. United States: N. p., 2019. Web. doi:10.1038/s41586-018-0809-4.
Sie, Edbert J., Nyby, Clara M., Pemmaraju, C. D., Park, Su Ji, Shen, Xiaozhe, Yang, Jie, Hoffmann, Matthias C., Ofori-Okai, B. K., Li, Renkai, Reid, Alexander H., Weathersby, Stephen, Mannebach, Ehren, Finney, Nathan, Rhodes, Daniel, Chenet, Daniel, Antony, Abhinandan, Balicas, Luis, Hone, James, Devereaux, Thomas P., Heinz, Tony F., Wang, Xijie, & Lindenberg, Aaron M. An ultrafast symmetry switch in a Weyl semimetal. United States. doi:10.1038/s41586-018-0809-4.
Sie, Edbert J., Nyby, Clara M., Pemmaraju, C. D., Park, Su Ji, Shen, Xiaozhe, Yang, Jie, Hoffmann, Matthias C., Ofori-Okai, B. K., Li, Renkai, Reid, Alexander H., Weathersby, Stephen, Mannebach, Ehren, Finney, Nathan, Rhodes, Daniel, Chenet, Daniel, Antony, Abhinandan, Balicas, Luis, Hone, James, Devereaux, Thomas P., Heinz, Tony F., Wang, Xijie, and Lindenberg, Aaron M. Wed . "An ultrafast symmetry switch in a Weyl semimetal". United States. doi:10.1038/s41586-018-0809-4. https://www.osti.gov/servlets/purl/1492730.
@article{osti_1492730,
title = {An ultrafast symmetry switch in a Weyl semimetal},
author = {Sie, Edbert J. and Nyby, Clara M. and Pemmaraju, C. D. and Park, Su Ji and Shen, Xiaozhe and Yang, Jie and Hoffmann, Matthias C. and Ofori-Okai, B. K. and Li, Renkai and Reid, Alexander H. and Weathersby, Stephen and Mannebach, Ehren and Finney, Nathan and Rhodes, Daniel and Chenet, Daniel and Antony, Abhinandan and Balicas, Luis and Hone, James and Devereaux, Thomas P. and Heinz, Tony F. and Wang, Xijie and Lindenberg, Aaron M.},
abstractNote = {Topological quantum materials exhibit fascinating properties with important applications for dissipationless electronics and fault-tolerant quantum computers. Manipulating the topological invariants in these materials would allow the development of topological switching applications analogous to switching of transistors. Lattice strain provides the most natural means of tuning these topological invariants because it directly modifies the electron–ion interactions and potentially alters the underlying crystalline symmetry on which the topological properties depend. However, conventional means of applying strain through heteroepitaxial lattice mismatch and dislocations are not extendable to controllable time-varying protocols, which are required in transistors. Integration into a functional device requires the ability to go beyond the robust, topologically protected properties of materials and to manipulate the topology at high speeds. Here in this paper we use crystallographic measurements by relativistic electron diffraction to demonstrate that terahertz light pulses can be used to induce terahertz-frequency interlayer shear strain with large strain amplitude in the Weyl semimetal WTe2, leading to a topologically distinct metastable phase. Separate nonlinear optical measurements indicate that this transition is associated with a symmetry change to a centrosymmetric, topologically trivial phase. We further show that such shear strain provides an ultrafast, energy-efficient way of inducing robust, well separated Weyl points or of annihilating all Weyl points of opposite chirality. This work demonstrates possibilities for ultrafast manipulation of the topological properties of solids and for the development of a topological switch operating at terahertz frequencies.},
doi = {10.1038/s41586-018-0809-4},
journal = {Nature (London)},
number = 7737,
volume = 565,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effect of the damping function in dispersion corrected density functional theory
journal, March 2011

  • Grimme, Stefan; Ehrlich, Stephan; Goerigk, Lars
  • Journal of Computational Chemistry, Vol. 32, Issue 7
  • DOI: 10.1002/jcc.21759

Topological semimetals
journal, October 2016


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Elastic and electronic tuning of magnetoresistance in MoTe 2
journal, December 2017


Weyl semimetals, Fermi arcs and chiral anomalies
journal, October 2016

  • Jia, Shuang; Xu, Su-Yang; Hasan, M. Zahid
  • Nature Materials, Vol. 15, Issue 11
  • DOI: 10.1038/nmat4787

New analytical scattering-factor functions for free atoms and ions
journal, May 1995

  • Waasmaier, D.; Kirfel, A.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 51, Issue 3
  • DOI: 10.1107/S0108767394013292

STM Imaging of Electronic Waves on the Surface of Bi2Te3: Topologically Protected Surface States and Hexagonal Warping Effects
journal, January 2010

  • Alpichshev, Zhanybek; Analytis, J. G.; Chu, J.-H.
  • Physical Review Letters, Vol. 104, Issue 1, Article No. 016401
  • DOI: 10.1103/PhysRevLett.104.016401

Projector augmented-wave method
journal, December 1994


Elastic Gauge Fields in Weyl Semimetals
journal, October 2015


Type-II Weyl semimetals
journal, November 2015

  • Soluyanov, Alexey A.; Gresch, Dominik; Wang, Zhijun
  • Nature, Vol. 527, Issue 7579
  • DOI: 10.1038/nature15768

Visualizing Type-II Weyl Points in Tungsten Ditelluride by Quasiparticle Interference
journal, September 2017


A hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection
journal, January 2008

  • Brunner, Fabian D.; Kwon, O-Pil; Kwon, Seong-Ji
  • Optics Express, Vol. 16, Issue 21
  • DOI: 10.1364/OE.16.016496

Large, non-saturating magnetoresistance in WTe2
journal, September 2014

  • Ali, Mazhar N.; Xiong, Jun; Flynn, Steven
  • Nature, Vol. 514, Issue 7521
  • DOI: 10.1038/nature13763

A terahertz pump mega-electron-volt ultrafast electron diffraction probe apparatus at the SLAC Accelerator Structure Test Area facility
journal, June 2018


van der Waals density functional made accurate
journal, March 2014


Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals
journal, December 2016

  • Wu, Liang; Patankar, S.; Morimoto, T.
  • Nature Physics, Vol. 13, Issue 4
  • DOI: 10.1038/nphys3969

Strain engineering Dirac surface states in heteroepitaxial topological crystalline insulator thin films
journal, August 2015

  • Zeljkovic, Ilija; Walkup, Daniel; Assaf, Badih A.
  • Nature Nanotechnology, Vol. 10, Issue 10
  • DOI: 10.1038/nnano.2015.177

Experimental Observation of Anisotropic Adler-Bell-Jackiw Anomaly in Type-II Weyl Semimetal WTe 1.98 Crystals at the Quasiclassical Regime
journal, March 2017


Metal-metal vs tellurium-tellurium bonding in WTe2 and its ternary variants TaIrTe4 and NbIrTe4
journal, November 1992

  • Mar, Arthur; Jobic, Stephane; Ibers, James A.
  • Journal of the American Chemical Society, Vol. 114, Issue 23
  • DOI: 10.1021/ja00049a029

Colloquium: Topological insulators
journal, November 2010


Picosecond acoustic response of a laser-heated gold-film studied with time-resolved x-ray diffraction
journal, May 2011

  • Nicoul, Matthieu; Shymanovich, Uladzimir; Tarasevitch, Alexander
  • Applied Physics Letters, Vol. 98, Issue 19
  • DOI: 10.1063/1.3584864

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


First principles phonon calculations in materials science
journal, November 2015


Strain-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles
journal, July 2010


Discovery of a Weyl fermion semimetal and topological Fermi arcs
journal, July 2015


Inhomogeneous Electron Gas
journal, November 1964


Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory
journal, July 2015

  • Weathersby, S. P.; Brown, G.; Centurion, M.
  • Review of Scientific Instruments, Vol. 86, Issue 7
  • DOI: 10.1063/1.4926994

Topological surface states protected from backscattering by chiral spin texture
journal, August 2009

  • Roushan, Pedram; Seo, Jungpil; Parker, Colin V.
  • Nature, Vol. 460, Issue 7259, p. 1106-1109
  • DOI: 10.1038/nature08308

Large-Size Bulk and Thin-Film Stilbazolium-Salt Single Crystals for Nonlinear Optics and THz Generation
journal, August 2007

  • Yang, Z.; Mutter, L.; Stillhart, M.
  • Advanced Functional Materials, Vol. 17, Issue 13
  • DOI: 10.1002/adfm.200601117

Quantum spin Hall effect in two-dimensional transition metal dichalcogenides
journal, November 2014


Femtosecond mega-electron-volt electron microdiffraction
journal, January 2018


Direct Synthesis of Large-Scale WTe 2 Thin Films with Low Thermal Conductivity
journal, January 2017

  • Zhou, Yu; Jang, Hyejin; Woods, John M.
  • Advanced Functional Materials, Vol. 27, Issue 8
  • DOI: 10.1002/adfm.201605928

Designer Dirac fermions and topological phases in molecular graphene
journal, March 2012

  • Gomes, Kenjiro K.; Mar, Warren; Ko, Wonhee
  • Nature, Vol. 483, Issue 7389
  • DOI: 10.1038/nature10941

Optical properties of the perfectly compensated semimetal WTe 2
journal, October 2015


Quantum Oscillations, Thermoelectric Coefficients, and the Fermi Surface of Semimetallic WTe 2
journal, April 2015


Topological nature of nonlinear optical effects in solids
journal, May 2016


Tuning Dirac states by strain in the topological insulator Bi2Se3
journal, March 2014

  • Liu, Y.; Li, Y. Y.; Rajput, S.
  • Nature Physics, Vol. 10, Issue 4
  • DOI: 10.1038/nphys2898

Activation of New Raman Modes by Inversion Symmetry Breaking in Type II Weyl Semimetal Candidate T ′-MoTe 2
journal, August 2016


Weyl semimetal phase in the non-centrosymmetric compound TaAs
journal, August 2015

  • Yang, L. X.; Liu, Z. K.; Sun, Y.
  • Nature Physics, Vol. 11, Issue 9
  • DOI: 10.1038/nphys3425

Optically excited structural transition in atomic wires on surfaces at the quantum limit
journal, March 2017


A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Evidence for topological type-II Weyl semimetal WTe2
journal, December 2017


Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2
journal, December 2016

  • Zhang, Kenan; Bao, Changhua; Gu, Qiangqiang
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13552