skip to main content

DOE PAGESDOE PAGES

Title: The detection of the imprint of filaments on cosmic microwave background lensing [The first detection of the imprint of filaments on CMB lensing]

Here, galaxy redshift surveys, such as the 2-Degree-Field Survey (2dF)1, Sloan Digital Sky Survey (SDSS), 6-Degree-Field Survey (6dF), Galaxy And Mass Assembly survey (GAMA)and VIMOS Public Extragalactic Redshift Survey (VIPERS), have shown that the spatial distribution of matter forms a rich web, known as the cosmic web6. Most galaxy survey analyses measure the amplitude of galaxy clustering as a function of scale, ignoring information beyond a small number of summary statistics. Because the matter density field becomes highly non-Gaussian as structure evolves under gravity, we expect other statistical descriptions of the field to provide us with additional information. One way to study the non-Gaussianity is to study filaments, which evolve non-linearly from the initial density fluctuations produced in the primordial Universe. In our study, we report the detection of lensing of the cosmic microwave background (CMB) by filaments, and we apply a null test to confirm our detection. Furthermore, we propose a phenomenological model to interpret the detected signal, and we measure how filaments trace the matter distribution on large scales through filament bias, which we measure to be around 1.5. Our study provides new scope to understand the environmental dependence of galaxy formation. In the future, the joint analysismore » of lensing and Sunyaev-Zel'dovich observations might reveal the properties of 'missing baryons', the vast majority of the gas that resides in the intergalactic medium, which has so far evaded most observations.« less
Authors:
ORCiD logo [1] ;  [2] ;  [3] ;  [4] ;  [5]
  1. Carnegie Mellon Univ., Pittsburgh, PA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Univ. of Edinburgh, Edinburgh (United Kingdom); Royal Observatory, Edinburgh (United Kingdom)
  3. Univ. of California, Berkeley, CA (United States)
  4. Univ. of Washington, Seattle, WA (United States)
  5. Carnegie Mellon Univ., Pittsburgh, PA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
Publication Date:
Grant/Contract Number:
AC02-05CH11231
Type:
Accepted Manuscript
Journal Name:
Nature Astronomy
Additional Journal Information:
Journal Volume: 2; Journal Issue: 5; Journal ID: ISSN 2397-3366
Publisher:
Springer Nature
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS
OSTI Identifier:
1492319

He, Siyu, Alam, Shadab, Ferraro, Simone, Chen, Yen -Chi, and Ho, Shirley. The detection of the imprint of filaments on cosmic microwave background lensing [The first detection of the imprint of filaments on CMB lensing]. United States: N. p., Web. doi:10.1038/s41550-018-0426-z.
He, Siyu, Alam, Shadab, Ferraro, Simone, Chen, Yen -Chi, & Ho, Shirley. The detection of the imprint of filaments on cosmic microwave background lensing [The first detection of the imprint of filaments on CMB lensing]. United States. doi:10.1038/s41550-018-0426-z.
He, Siyu, Alam, Shadab, Ferraro, Simone, Chen, Yen -Chi, and Ho, Shirley. 2018. "The detection of the imprint of filaments on cosmic microwave background lensing [The first detection of the imprint of filaments on CMB lensing]". United States. doi:10.1038/s41550-018-0426-z. https://www.osti.gov/servlets/purl/1492319.
@article{osti_1492319,
title = {The detection of the imprint of filaments on cosmic microwave background lensing [The first detection of the imprint of filaments on CMB lensing]},
author = {He, Siyu and Alam, Shadab and Ferraro, Simone and Chen, Yen -Chi and Ho, Shirley},
abstractNote = {Here, galaxy redshift surveys, such as the 2-Degree-Field Survey (2dF)1, Sloan Digital Sky Survey (SDSS), 6-Degree-Field Survey (6dF), Galaxy And Mass Assembly survey (GAMA)and VIMOS Public Extragalactic Redshift Survey (VIPERS), have shown that the spatial distribution of matter forms a rich web, known as the cosmic web6. Most galaxy survey analyses measure the amplitude of galaxy clustering as a function of scale, ignoring information beyond a small number of summary statistics. Because the matter density field becomes highly non-Gaussian as structure evolves under gravity, we expect other statistical descriptions of the field to provide us with additional information. One way to study the non-Gaussianity is to study filaments, which evolve non-linearly from the initial density fluctuations produced in the primordial Universe. In our study, we report the detection of lensing of the cosmic microwave background (CMB) by filaments, and we apply a null test to confirm our detection. Furthermore, we propose a phenomenological model to interpret the detected signal, and we measure how filaments trace the matter distribution on large scales through filament bias, which we measure to be around 1.5. Our study provides new scope to understand the environmental dependence of galaxy formation. In the future, the joint analysis of lensing and Sunyaev-Zel'dovich observations might reveal the properties of 'missing baryons', the vast majority of the gas that resides in the intergalactic medium, which has so far evaded most observations.},
doi = {10.1038/s41550-018-0426-z},
journal = {Nature Astronomy},
number = 5,
volume = 2,
place = {United States},
year = {2018},
month = {4}
}