DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Unraveling the Spectral Signatures of Solvent Ordering in K-edge XANES of Aqueous Na+

Abstract

The aqueous solvation structure of the Na+ ion is studied both by molecular dynamics (MD) simulations and K-edge X-ray absorption near edge spectroscopy (XANES). In this paper, we present a systematic study contrasting the differences in the predicted XANES spectra, using molecular configurations generated from classical and quantum MD. Using a set of suitable order parameters, we elucidate how the spectroscopic features are influenced by the local solvation structure around the Na+ ion. Lastly, our findings suggest that XANES is sensitive to fluctuations between the first and second solvation shells and can distinguish between classical and quantum interaction representations used to generate molecular ensembles.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1];  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States) ; Univ. of Washington, Seattle, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division; USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1492306
Alternate Identifier(s):
OSTI ID: 1472223
Report Number(s):
PNNL-SA-131808
Journal ID: ISSN 0021-9606
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 149; Journal Issue: 12; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Galib, M., Schenter, G. K., Mundy, C. J., Govind, N., and Fulton, J. L. Unraveling the Spectral Signatures of Solvent Ordering in K-edge XANES of Aqueous Na+. United States: N. p., 2018. Web. doi:10.1063/1.5024568.
Galib, M., Schenter, G. K., Mundy, C. J., Govind, N., & Fulton, J. L. Unraveling the Spectral Signatures of Solvent Ordering in K-edge XANES of Aqueous Na+. United States. https://doi.org/10.1063/1.5024568
Galib, M., Schenter, G. K., Mundy, C. J., Govind, N., and Fulton, J. L. Mon . "Unraveling the Spectral Signatures of Solvent Ordering in K-edge XANES of Aqueous Na+". United States. https://doi.org/10.1063/1.5024568. https://www.osti.gov/servlets/purl/1492306.
@article{osti_1492306,
title = {Unraveling the Spectral Signatures of Solvent Ordering in K-edge XANES of Aqueous Na+},
author = {Galib, M. and Schenter, G. K. and Mundy, C. J. and Govind, N. and Fulton, J. L.},
abstractNote = {The aqueous solvation structure of the Na+ ion is studied both by molecular dynamics (MD) simulations and K-edge X-ray absorption near edge spectroscopy (XANES). In this paper, we present a systematic study contrasting the differences in the predicted XANES spectra, using molecular configurations generated from classical and quantum MD. Using a set of suitable order parameters, we elucidate how the spectroscopic features are influenced by the local solvation structure around the Na+ ion. Lastly, our findings suggest that XANES is sensitive to fluctuations between the first and second solvation shells and can distinguish between classical and quantum interaction representations used to generate molecular ensembles.},
doi = {10.1063/1.5024568},
journal = {Journal of Chemical Physics},
number = 12,
volume = 149,
place = {United States},
year = {Mon Sep 24 00:00:00 EDT 2018},
month = {Mon Sep 24 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: . Schematic representations of the order parameters as described in the main text. (a) The coordination number is defined as the number of water molecules in the first solvation shell. A large O–O distance deviation between two adjacent nearest neighbors defines the position between the first and secondmore » solvation shells. The water molecules in the gray area correspond to the first solvation shell and those in the blue area correspond to the second solvation shell. Both shells are clearly separated from each other as shown by the white area. (b) The INT6 order parameter distinguishes between an ordered and a disordered inter-shell structure. When INT6 >> 0, the second solvation shell is clearly separated from the first solvation shell. When INT6 = 0, an interstitial water resides between these two solvation shells. The fluctuation of the interstitial water diminishes the separated area between two solvation shells. (c) The tilt angle is defined as the angle between the vector from the oxygen to the ion and the dipole moment vector of the water molecule.« less

Save / Share:

Works referenced in this record:

Negligible Effect of Ions on the Hydrogen-Bond Structure in Liquid Water
journal, July 2003


Is Iodate a Strongly Hydrated Cation?
journal, October 2011

  • Baer, Marcel D.; Pham, Van-Thai; Fulton, John L.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 20
  • DOI: 10.1021/jz2011435

Ion selectivity in channels and transporters
journal, April 2011

  • Roux, Benoît; Bernèche, Simon; Egwolf, Bernhard
  • The Journal of General Physiology, Vol. 137, Issue 5
  • DOI: 10.1085/jgp.201010577

Specific Ion Effects at the Air/Water Interface
journal, April 2006

  • Jungwirth, Pavel; Tobias, Douglas J.
  • Chemical Reviews, Vol. 106, Issue 4
  • DOI: 10.1021/cr0403741

Hydration of Sodium, Potassium, and Chloride Ions in Solution and the Concept of Structure Maker/Breaker
journal, December 2007

  • Mancinelli, R.; Botti, A.; Bruni, F.
  • The Journal of Physical Chemistry B, Vol. 111, Issue 48
  • DOI: 10.1021/jp075913v

Dispersion- and Exchange-Corrected Density Functional Theory for Sodium Ion Hydration
journal, June 2015

  • Soniat, Marielle; Rogers, David M.; Rempe, Susan B.
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 7
  • DOI: 10.1021/acs.jctc.5b00357

Growth and collapse of structural patterns in the hydrogen bond network in liquid water
journal, May 1996

  • Shiratani, Eli; Sasai, Masaki
  • The Journal of Chemical Physics, Vol. 104, Issue 19
  • DOI: 10.1063/1.471475

Linear-Response and Real-Time Time-Dependent Density Functional Theory Studies of Core-Level Near-Edge X-Ray Absorption
journal, August 2012

  • Lopata, K.; Van Kuiken, B. E.; Khalil, M.
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 9
  • DOI: 10.1021/ct3005613

Local Aqueous Solvation Structure Around Ca 2+ During Ca 2+ ···Cl Pair Formation
journal, November 2015

  • Baer, Marcel D.; Mundy, Christopher J.
  • The Journal of Physical Chemistry B, Vol. 120, Issue 8
  • DOI: 10.1021/acs.jpcb.5b09579

Neutron diffraction studies of electrolytes in null water: a direct determination of the first hydration zone of ions
journal, August 2006


The structure of aqueous sodium hydroxide solutions: A combined solution x-ray diffraction and simulation study
journal, January 2008

  • Megyes, Tünde; Bálint, Szabolcs; Grósz, Tamás
  • The Journal of Chemical Physics, Vol. 128, Issue 4
  • DOI: 10.1063/1.2821956

Electrolytes induce long-range orientational order and free energy changes in the H-bond network of bulk water
journal, April 2016

  • Chen, Yixing; Okur, Halil I.; Gomopoulos, Nikolaos
  • Science Advances, Vol. 2, Issue 4
  • DOI: 10.1126/sciadv.1501891

Hydration structure of salt solutions from ab initio molecular dynamics
journal, January 2013

  • Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.
  • The Journal of Chemical Physics, Vol. 138, Issue 1
  • DOI: 10.1063/1.4772761

Interactions and structure in aqueous NaNO 3 solutions
journal, April 1980

  • Caminiti, R.; Licheri, G.; Paschina, G.
  • The Journal of Chemical Physics, Vol. 72, Issue 8
  • DOI: 10.1063/1.439694

Ion selectivity of the apical membrane Na channel in the toad urinary bladder
journal, December 1982

  • Palmer, Lawrence G.
  • The Journal of Membrane Biology, Vol. 67, Issue 1
  • DOI: 10.1007/bf01868651

Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions
journal, January 1980

  • Krishnan, R.; Binkley, J. S.; Seeger, R.
  • The Journal of Chemical Physics, Vol. 72, Issue 1
  • DOI: 10.1063/1.438955

Revisiting the hydration structure of aqueous Na +
journal, February 2017

  • Galib, M.; Baer, M. D.; Skinner, L. B.
  • The Journal of Chemical Physics, Vol. 146, Issue 8
  • DOI: 10.1063/1.4975608

A new mixing of Hartree–Fock and local density‐functional theories
journal, January 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 2
  • DOI: 10.1063/1.464304

Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
journal, April 2005

  • VandeVondele, Joost; Krack, Matthias; Mohamed, Fawzi
  • Computer Physics Communications, Vol. 167, Issue 2
  • DOI: 10.1016/j.cpc.2004.12.014

A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution
journal, December 2011

  • Mähler, Johan; Persson, Ingmar
  • Inorganic Chemistry, Vol. 51, Issue 1
  • DOI: 10.1021/ic2018693

Disentangling structural information from core-level excitation spectra
journal, July 2017


NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
journal, September 2010

  • Valiev, M.; Bylaska, E. J.; Govind, N.
  • Computer Physics Communications, Vol. 181, Issue 9, p. 1477-1489
  • DOI: 10.1016/j.cpc.2010.04.018

Cationic and Anionic Impact on the Electronic Structure of Liquid Water
journal, August 2017

  • Yin, Zhong; Inhester, Ludger; Thekku Veedu, Sreevidya
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 16
  • DOI: 10.1021/acs.jpclett.7b01392

The structure of liquid water up to 360 MPa from x-ray diffraction measurements using a high Q-range and from molecular simulation
journal, April 2016

  • Skinner, L. B.; Galib, M.; Fulton, J. L.
  • The Journal of Chemical Physics, Vol. 144, Issue 13
  • DOI: 10.1063/1.4944935

Persistent Ion Pairing in Aqueous Hydrochloric Acid
journal, June 2014

  • Baer, Marcel D.; Fulton, John L.; Balasubramanian, Mahalingam
  • The Journal of Physical Chemistry B, Vol. 118, Issue 26
  • DOI: 10.1021/jp501091h

Structure and Nanostructure in Ionic Liquids
journal, June 2015

  • Hayes, Robert; Warr, Gregory G.; Atkin, Rob
  • Chemical Reviews, Vol. 115, Issue 13
  • DOI: 10.1021/cr500411q

Molecular and electronic structure in NaCl electrolytes of varying concentration: Identification of spectral fingerprints
journal, March 2006

  • Aziz, Emad F.; Zimina, A.; Freiwald, M.
  • The Journal of Chemical Physics, Vol. 124, Issue 11
  • DOI: 10.1063/1.2176616

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Local Effects in the X-ray Absorption Spectrum of Salt Water
journal, July 2010

  • Kulik, Heather J.; Marzari, Nicola; Correa, Alfredo A.
  • The Journal of Physical Chemistry B, Vol. 114, Issue 29
  • DOI: 10.1021/jp103526y

The crystal structure of a voltage-gated sodium channel
journal, July 2011

  • Payandeh, Jian; Scheuer, Todd; Zheng, Ning
  • Nature, Vol. 475, Issue 7356
  • DOI: 10.1038/nature10238

Nosé–Hoover chains: The canonical ensemble via continuous dynamics
journal, August 1992

  • Martyna, Glenn J.; Klein, Michael L.; Tuckerman, Mark
  • The Journal of Chemical Physics, Vol. 97, Issue 4
  • DOI: 10.1063/1.463940

Segmented contracted basis sets for atoms H through Xe: Sapporo-(DK)-nZP sets (n = D, T, Q)
journal, February 2012

  • Noro, Takeshi; Sekiya, Masahiro; Koga, Toshikatsu
  • Theoretical Chemistry Accounts, Vol. 131, Issue 2
  • DOI: 10.1007/s00214-012-1124-z

A short description of DL_POLY
journal, October 2006


Structure and dynamics of hydrated ions
journal, May 1993


The hydration entropies of ions and their effects on the structure of water
journal, January 1986

  • Marcus, Yizhak
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 82, Issue 1
  • DOI: 10.1039/f19868200233

Supersaturated calcium carbonate solutions are classical
journal, January 2018

  • Henzler, Katja; Fetisov, Evgenii O.; Galib, Mirza
  • Science Advances, Vol. 4, Issue 1
  • DOI: 10.1126/sciadv.aao6283

Water's non-tetrahedral side
journal, January 2013

  • Henchman, Richard H.; Cockram, Stuart J.
  • Faraday Discussions, Vol. 167
  • DOI: 10.1039/c3fd00080j

Probing the Hydration Structure of Polarizable Halides: A Multiedge XAFS and Molecular Dynamics Study of the Iodide Anion
journal, October 2010

  • Fulton, John L.; Schenter, Gregory K.; Baer, Marcel D.
  • The Journal of Physical Chemistry B, Vol. 114, Issue 40
  • DOI: 10.1021/jp106378p

Structural Dynamics of Aqueous Salt Solutions
journal, April 2008


Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures by computer simulations
journal, May 1993

  • Luzar, Alenka; Chandler, David
  • The Journal of Chemical Physics, Vol. 98, Issue 10
  • DOI: 10.1063/1.464521

The Aqueous Ca 2+ System, in Comparison with Zn 2+ , Fe 3 + , and Al 3 + : An Ab Initio Molecular Dynamics Study
journal, January 2013

  • Bogatko, Stuart; Cauët, Emilie; Bylaska, Eric
  • Chemistry - A European Journal, Vol. 19, Issue 9
  • DOI: 10.1002/chem.201202821

Local structure analysis in ab initio liquid water
journal, July 2015


Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations
journal, July 2008

  • Joung, In Suk; Cheatham, Thomas E.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 30
  • DOI: 10.1021/jp8001614

A smooth particle mesh Ewald method
journal, November 1995

  • Essmann, Ulrich; Perera, Lalith; Berkowitz, Max L.
  • The Journal of Chemical Physics, Vol. 103, Issue 19
  • DOI: 10.1063/1.470117

Molecular scale precursor of the liquid–liquid phase transition of water
journal, February 1998

  • Shiratani, Eli; Sasai, Masaki
  • The Journal of Chemical Physics, Vol. 108, Issue 8
  • DOI: 10.1063/1.475723

X-ray absorption of liquid water by advanced ab initio methods
journal, September 2017


Effect of Ions on the Structure of Water: Structure Making and Breaking
journal, March 2009


Impacts of Geochemical Reactions on Geologic Carbon Sequestration
journal, August 2012

  • Jun, Young-Shin; Giammar, Daniel E.; Werth, Charles J.
  • Environmental Science & Technology, Vol. 47, Issue 1
  • DOI: 10.1021/es3027133

The missing term in effective pair potentials
journal, November 1987

  • Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P.
  • The Journal of Physical Chemistry, Vol. 91, Issue 24
  • DOI: 10.1021/j100308a038

Hydration structure of Na + and K + from ab initio molecular dynamics based on modern density functional theory
journal, February 2014


Ab initio phase diagram and nucleation of gallium
journal, May 2020


One-dimensional intergrowths in two-dimensional zeolite nanosheets and their effect on ultra-selective transport
journal, February 2020


Ion selectivity in channels and transporters
text, January 2011


Local Structure Analysis in $Ab$ $Initio$ Liquid Water
text, January 2015


Disentangling Structural Information From Core-level Excitation Spectra
text, January 2017


Separable Dual Space Gaussian Pseudo-potentials
text, January 1995


Works referencing / citing this record:

Quantifying the hydration structure of sodium and potassium ions: taking additional steps on Jacob's Ladder
text, January 2020

  • Duignan, Timothy T.; Schenter, Gregory K.; Fulton, John L.
  • Universität Regensburg
  • DOI: 10.5283/epub.45957

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.