skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Unusual pressure-induced electronic structure evolution in organometal halide perovskite predicted from first-principles

Abstract

Pressure has been demonstrated to be an effective parameter to alter the atomic and electronic structures of materials. By using the first-principles calculations based on density functional theory (DFT), we systematically investigated the changes in the atomic and electronic structures of the cubic MAPbI3 phase under pressures. It is found that the band gap of the compressed cubic MAPbI3 structure exhibits a remarkable redshift to 1.114/1.380 eV in DFT/HSE-SOC calculation under a mild pressure of 2.772 GPa, and subsequently shows a widening at higher pressures until ~20 GPa. As the pressure further increases, the band gap closes at ~80 GPa. Detailed structural and electronic characteristic analyses indicate that the band gap of the cubic MAPbI3 structure is determined by two competing effects: the lattice contraction decreases its band gap while the PbI6 octahedral tilting increases it. Given that, pressure can be a powerful tool to help understanding the optoelectronic properties of perovskite materials.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [2]
  1. Zhengzhou Univ. (China)
  2. Ames Lab., Ames, IA (United States)
Publication Date:
Research Org.:
Ames Lab., Ames, IA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1492304
Alternate Identifier(s):
OSTI ID: 1547881
Report Number(s):
IS-J-9845
Journal ID: ISSN 1566-1199
Grant/Contract Number:  
11504332; 1521317008; AC02-07CH11358
Resource Type:
Accepted Manuscript
Journal Name:
Organic Electronics
Additional Journal Information:
Journal Volume: 67; Journal Issue: C; Journal ID: ISSN 1566-1199
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Wang, Fei, Tan, Mengping, Li, Chong, Niu, Chunyao, and Zhao, Xin. Unusual pressure-induced electronic structure evolution in organometal halide perovskite predicted from first-principles. United States: N. p., 2019. Web. https://doi.org/10.1016/j.orgel.2019.01.003.
Wang, Fei, Tan, Mengping, Li, Chong, Niu, Chunyao, & Zhao, Xin. Unusual pressure-induced electronic structure evolution in organometal halide perovskite predicted from first-principles. United States. https://doi.org/10.1016/j.orgel.2019.01.003
Wang, Fei, Tan, Mengping, Li, Chong, Niu, Chunyao, and Zhao, Xin. Sun . "Unusual pressure-induced electronic structure evolution in organometal halide perovskite predicted from first-principles". United States. https://doi.org/10.1016/j.orgel.2019.01.003. https://www.osti.gov/servlets/purl/1492304.
@article{osti_1492304,
title = {Unusual pressure-induced electronic structure evolution in organometal halide perovskite predicted from first-principles},
author = {Wang, Fei and Tan, Mengping and Li, Chong and Niu, Chunyao and Zhao, Xin},
abstractNote = {Pressure has been demonstrated to be an effective parameter to alter the atomic and electronic structures of materials. By using the first-principles calculations based on density functional theory (DFT), we systematically investigated the changes in the atomic and electronic structures of the cubic MAPbI3 phase under pressures. It is found that the band gap of the compressed cubic MAPbI3 structure exhibits a remarkable redshift to 1.114/1.380 eV in DFT/HSE-SOC calculation under a mild pressure of 2.772 GPa, and subsequently shows a widening at higher pressures until ~20 GPa. As the pressure further increases, the band gap closes at ~80 GPa. Detailed structural and electronic characteristic analyses indicate that the band gap of the cubic MAPbI3 structure is determined by two competing effects: the lattice contraction decreases its band gap while the PbI6 octahedral tilting increases it. Given that, pressure can be a powerful tool to help understanding the optoelectronic properties of perovskite materials.},
doi = {10.1016/j.orgel.2019.01.003},
journal = {Organic Electronics},
number = C,
volume = 67,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
journal, May 2009

  • Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo
  • Journal of the American Chemical Society, Vol. 131, Issue 17, p. 6050-6051
  • DOI: 10.1021/ja809598r

Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance
journal, May 2014


Halide perovskite materials for solar cells: a theoretical review
journal, January 2015

  • Yin, Wan-Jian; Yang, Ji-Hui; Kang, Joongoo
  • Journal of Materials Chemistry A, Vol. 3, Issue 17
  • DOI: 10.1039/C4TA05033A

The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells
journal, May 2015

  • Leguy, Aurelien M. A.; Frost, Jarvist Moore; McMahon, Andrew P.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8124

Indirect to direct bandgap transition in methylammonium lead halide perovskite
journal, January 2017

  • Wang, Tianyi; Daiber, Benjamin; Frost, Jarvist M.
  • Energy & Environmental Science, Vol. 10, Issue 2
  • DOI: 10.1039/C6EE03474H

Direct–indirect character of the bandgap in methylammonium lead iodide perovskite
journal, October 2016

  • Hutter, Eline M.; Gélvez-Rueda, María C.; Osherov, Anna
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4765

The efficiency limit of CH 3 NH 3 PbI 3 perovskite solar cells
journal, June 2015

  • Sha, Wei E. I.; Ren, Xingang; Chen, Luzhou
  • Applied Physics Letters, Vol. 106, Issue 22
  • DOI: 10.1063/1.4922150

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

Pressure-Induced Phase Transformation, Reversible Amorphization, and Anomalous Visible Light Response in Organolead Bromide Perovskite
journal, August 2015

  • Wang, Yonggang; Lü, Xujie; Yang, Wenge
  • Journal of the American Chemical Society, Vol. 137, Issue 34
  • DOI: 10.1021/jacs.5b06346

Visible light response, electrical transport, and amorphization in compressed organolead iodine perovskites
journal, January 2016

  • Ou, Tianji; Yan, Jiejuan; Xiao, Chuanhai
  • Nanoscale, Vol. 8, Issue 22
  • DOI: 10.1039/C5NR07842C

Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites
journal, July 2016

  • Kong, Lingping; Liu, Gang; Gong, Jue
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 32
  • DOI: 10.1073/pnas.1609030113

Pressure-Induced Metallization of the Halide Perovskite (CH 3 NH 3 )PbI 3
journal, March 2017

  • Jaffe, Adam; Lin, Yu; Mao, Wendy L.
  • Journal of the American Chemical Society, Vol. 139, Issue 12
  • DOI: 10.1021/jacs.7b01162

Steric engineering of metal-halide perovskites with tunable optical band gaps
journal, December 2014

  • Filip, Marina R.; Eperon, Giles E.; Snaith, Henry J.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6757

Octahedral Rotation Preferences in Perovskite Iodides and Bromides
journal, February 2016


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Unusual defect physics in CH 3 NH 3 PbI 3 perovskite solar cell absorber
journal, February 2014

  • Yin, Wan-Jian; Shi, Tingting; Yan, Yanfa
  • Applied Physics Letters, Vol. 104, Issue 6
  • DOI: 10.1063/1.4864778

First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications
journal, July 2013

  • Mosconi, Edoardo; Amat, Anna; Nazeeruddin, Md. K.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 27
  • DOI: 10.1021/jp4048659

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH 3 NH 3 PbI 3
journal, January 2014

  • Wang, Yun; Gould, Tim; Dobson, John F.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 4
  • DOI: 10.1039/C3CP54479F

Role of Dispersive Interactions in Determining Structural Properties of Organic–Inorganic Halide Perovskites: Insights from First-Principles Calculations
journal, July 2014

  • Egger, David A.; Kronik, Leeor
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 15
  • DOI: 10.1021/jz5012934

Valence and Conduction Band Densities of States of Metal Halide Perovskites: A Combined Experimental–Theoretical Study
journal, June 2016

  • Endres, James; Egger, David A.; Kulbak, Michael
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 14
  • DOI: 10.1021/acs.jpclett.6b00946

Structural Study on Cubic–Tetragonal Transition of CH 3 NH 3 PbI 3
journal, July 2002

  • Kawamura, Yukihiko; Mashiyama, Hiroyuki; Hasebe, Katsuhiko
  • Journal of the Physical Society of Japan, Vol. 71, Issue 7
  • DOI: 10.1143/JPSJ.71.1694

Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties
journal, July 2013

  • Stoumpos, Constantinos C.; Malliakas, Christos D.; Kanatzidis, Mercouri G.
  • Inorganic Chemistry, Vol. 52, Issue 15, p. 9019-9038
  • DOI: 10.1021/ic401215x

Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles
journal, October 2013

  • Brivio, Federico; Walker, Alison B.; Walsh, Aron
  • APL Materials, Vol. 1, Issue 4
  • DOI: 10.1063/1.4824147

Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis
journal, November 2013

  • Giorgi, Giacomo; Fujisawa, Jun-Ichi; Segawa, Hiroshi
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 24
  • DOI: 10.1021/jz4023865

First-principles prediction of charge mobility in carbon and organic nanomaterials
journal, January 2012

  • Xi, Jinyang; Long, Mengqiu; Tang, Ling
  • Nanoscale, Vol. 4, Issue 15
  • DOI: 10.1039/c2nr30585b

Pressure-Induced Band Structure Evolution of Halide Perovskites: A First-Principles Atomic and Electronic Structure Study
journal, December 2018

  • Huang, Yang; Wang, Lingrui; Ma, Zhuang
  • The Journal of Physical Chemistry C, Vol. 123, Issue 1
  • DOI: 10.1021/acs.jpcc.8b11500

General Rules for Predicting Phase Transitions in Perovskites due to Octahedral Tilting
journal, July 2005


Jahn–Teller distortions, cation ordering and octahedral tilting in perovskites
journal, January 2004

  • Lufaso, Michael W.; Woodward, Patrick M.
  • Acta Crystallographica Section B Structural Science, Vol. 60, Issue 1
  • DOI: 10.1107/S0108768103026661

Resolving the Physical Origin of Octahedral Tilting in Halide Perovskites
journal, June 2016


Role of the A -site cation in determining the properties of the hybrid perovskite CH 3 NH 3 PbBr 3
journal, June 2017


Role of hydrogen-bonding and its interplay with octahedral tilting in CH 3 NH 3 PbI 3
journal, January 2015

  • Lee, Jung-Hoon; Bristowe, Nicholas C.; Bristowe, Paul D.
  • Chemical Communications, Vol. 51, Issue 29
  • DOI: 10.1039/C5CC00979K

    Works referencing / citing this record:

    Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies
    journal, January 2020

    • Li, Mei; Liu, Tianbiao; Wang, Yonggang
    • Matter and Radiation at Extremes, Vol. 5, Issue 1
    • DOI: 10.1063/1.5133653