DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microbial interactions in the anaerobic oxidation of methane: model simulations constrained by process rates and activity patterns: Process modelling of anaerobic methane oxidation

Abstract

Summary Proposed syntrophic interactions between the archaeal and bacterial cells mediating anaerobic oxidation of methane coupled with sulfate reduction include electron transfer through (1) the exchange of H 2 or small organic molecules between methane‐oxidizing archaea and sulfate‐reducing bacteria, (2) the delivery of disulfide from methane‐oxidizing archaea to bacteria for disproportionation and (3) direct interspecies electron transfer. Each of these mechanisms was implemented in a reactive transport model. The simulated activities across different arrangements of archaeal and bacterial cells and aggregate sizes were compared to empirical data for AOM rates and intra‐aggregate spatial patterns of cell‐specific anabolic activity determined by FISH‐nanoSIMS. Simulation results showed that rates for chemical diffusion by mechanism (1) were limited by the build‐up of metabolites, while mechanisms (2) and (3) yielded cell specific rates and archaeal activity distributions that were consistent with observations from single cell resolved FISH‐nanoSIMS analyses. The novel integration of both intra‐aggregate and environmental data provided powerful constraints on the model results, but the similarities in model outcomes for mechanisms (2) and (3) highlight the need for additional observational data (e.g. genomic or physiological) on electron transfer and metabolic functioning of these globally important methanotrophic consortia.

Authors:
ORCiD logo [1];  [2];  [3];  [1];  [4];  [2];  [1]
  1. Univ. of Georgia, Athens, GA (United States)
  2. California Institute of Technology (CalTech), Pasadena, CA (United States)
  3. Santa Fe Inst. (SFI), Santa Fe, NM (United States)
  4. Tokyo Institute of Technology (Japan). Earth-Life Science Inst.; California Institute of Technology (CalTech), Pasadena, CA (United States)
Publication Date:
Research Org.:
California Institute of Technology (CalTech), Pasadena, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1612579
Alternate Identifier(s):
OSTI ID: 1491920
Grant/Contract Number:  
SC0016469
Resource Type:
Accepted Manuscript
Journal Name:
Environmental Microbiology
Additional Journal Information:
Journal Volume: 21; Journal Issue: 2; Journal ID: ISSN 1462-2912
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Microbiology

Citation Formats

He, Xiaojia, Chadwick, Grayson, Kempes, Christopher, Shi, Yimeng, McGlynn, Shawn, Orphan, Victoria, and Meile, Christof. Microbial interactions in the anaerobic oxidation of methane: model simulations constrained by process rates and activity patterns: Process modelling of anaerobic methane oxidation. United States: N. p., 2018. Web. doi:10.1111/1462-2920.14507.
He, Xiaojia, Chadwick, Grayson, Kempes, Christopher, Shi, Yimeng, McGlynn, Shawn, Orphan, Victoria, & Meile, Christof. Microbial interactions in the anaerobic oxidation of methane: model simulations constrained by process rates and activity patterns: Process modelling of anaerobic methane oxidation. United States. https://doi.org/10.1111/1462-2920.14507
He, Xiaojia, Chadwick, Grayson, Kempes, Christopher, Shi, Yimeng, McGlynn, Shawn, Orphan, Victoria, and Meile, Christof. Wed . "Microbial interactions in the anaerobic oxidation of methane: model simulations constrained by process rates and activity patterns: Process modelling of anaerobic methane oxidation". United States. https://doi.org/10.1111/1462-2920.14507. https://www.osti.gov/servlets/purl/1612579.
@article{osti_1612579,
title = {Microbial interactions in the anaerobic oxidation of methane: model simulations constrained by process rates and activity patterns: Process modelling of anaerobic methane oxidation},
author = {He, Xiaojia and Chadwick, Grayson and Kempes, Christopher and Shi, Yimeng and McGlynn, Shawn and Orphan, Victoria and Meile, Christof},
abstractNote = {Summary Proposed syntrophic interactions between the archaeal and bacterial cells mediating anaerobic oxidation of methane coupled with sulfate reduction include electron transfer through (1) the exchange of H 2 or small organic molecules between methane‐oxidizing archaea and sulfate‐reducing bacteria, (2) the delivery of disulfide from methane‐oxidizing archaea to bacteria for disproportionation and (3) direct interspecies electron transfer. Each of these mechanisms was implemented in a reactive transport model. The simulated activities across different arrangements of archaeal and bacterial cells and aggregate sizes were compared to empirical data for AOM rates and intra‐aggregate spatial patterns of cell‐specific anabolic activity determined by FISH‐nanoSIMS. Simulation results showed that rates for chemical diffusion by mechanism (1) were limited by the build‐up of metabolites, while mechanisms (2) and (3) yielded cell specific rates and archaeal activity distributions that were consistent with observations from single cell resolved FISH‐nanoSIMS analyses. The novel integration of both intra‐aggregate and environmental data provided powerful constraints on the model results, but the similarities in model outcomes for mechanisms (2) and (3) highlight the need for additional observational data (e.g. genomic or physiological) on electron transfer and metabolic functioning of these globally important methanotrophic consortia.},
doi = {10.1111/1462-2920.14507},
journal = {Environmental Microbiology},
number = 2,
volume = 21,
place = {United States},
year = {Wed Dec 19 00:00:00 EST 2018},
month = {Wed Dec 19 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Lack of cytochrome involvement in long-range electron transport through conductive biofilms and nanowires of Geobacter sulfurreducens
journal, January 2012

  • Malvankar, Nikhil S.; Tuominen, Mark T.; Lovley, Derek R.
  • Energy & Environmental Science, Vol. 5, Issue 9
  • DOI: 10.1039/c2ee22330a

Production of electrically-conductive nanoscale filaments by sulfate-reducing bacteria in the microbial fuel cell
journal, June 2016


Volumetric and Transport Properties of Aqueous NaB(OH)4 Solutions
journal, September 2013


A microbial consortium couples anaerobic methane oxidation to denitrification
journal, April 2006

  • Raghoebarsing, Ashna A.; Pol, Arjan; van de Pas-Schoonen, Katinka T.
  • Nature, Vol. 440, Issue 7086
  • DOI: 10.1038/nature04617

Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane
journal, August 2002


Biofilm and Nanowire Production Leads to Increased Current in Geobacter sulfurreducens Fuel Cells
journal, August 2006

  • Reguera, G.; Nevin, K. P.; Nicoll, J. S.
  • Applied and Environmental Microbiology, Vol. 72, Issue 11
  • DOI: 10.1128/AEM.01444-06

Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium
journal, December 1994

  • Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.
  • Global Biogeochemical Cycles, Vol. 8, Issue 4
  • DOI: 10.1029/94GB01800

In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate
journal, January 2007


Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction
journal, February 2016


Competitive labelling, a method for determining the reactivity of individual groups in proteins. The amino groups of porcine elastase
journal, September 1971

  • Kaplan, H.; Stevenson, K. J.; Hartley, B. S.
  • Biochemical Journal, Vol. 124, Issue 2
  • DOI: 10.1042/bj1240289

Tunable metallic-like conductivity in microbial nanowire networks
journal, August 2011

  • Malvankar, Nikhil S.; Vargas, Madeline; Nevin, Kelly P.
  • Nature Nanotechnology, Vol. 6, Issue 9
  • DOI: 10.1038/nnano.2011.119

Analysis of electron transfer dynamics in mixed community electroactive microbial biofilms
journal, January 2016

  • Virdis, Bernardino; Millo, Diego; Donose, Bogdan C.
  • RSC Advances, Vol. 6, Issue 5
  • DOI: 10.1039/C5RA15676A

Characterization and Implications of the Cell Surface Reactivity of Calothrix sp. Strain KC97
journal, October 2002


Methane-consuming archaebacteria in marine sediments
journal, April 1999

  • Hinrichs, Kai-Uwe; Hayes, John M.; Sylva, Sean P.
  • Nature, Vol. 398, Issue 6730
  • DOI: 10.1038/19751

Manganese- and Iron-Dependent Marine Methane Oxidation
journal, July 2009


Site-Specific Protonation Kinetics of Acidic Side Chains in Proteins Determined by pH-Dependent Carboxyl 13 C NMR Relaxation
journal, February 2015

  • Wallerstein, Johan; Weininger, Ulrich; Khan, M. Ashhar I.
  • Journal of the American Chemical Society, Vol. 137, Issue 8
  • DOI: 10.1021/ja513205s

Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment
journal, December 2001


The relay network of Geobacter biofilms
journal, January 2016

  • Ordóñez, M. V.; Schrott, G. D.; Massazza, D. A.
  • Energy & Environmental Science, Vol. 9, Issue 9
  • DOI: 10.1039/C6EE01699E

Trace Metal Requirements for Microbial Enzymes Involved in the Production and Consumption of Methane and Nitrous Oxide
journal, January 2012


Archaea catalyze iron-dependent anaerobic oxidation of methane
journal, October 2016

  • Ettwig, Katharina F.; Zhu, Baoli; Speth, Daan
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 45
  • DOI: 10.1073/pnas.1609534113

Modelling extracellular limitations for mediated versus direct interspecies electron transfer
journal, November 2015

  • Storck, Tomas; Virdis, Bernardino; Batstone, Damien J.
  • The ISME Journal, Vol. 10, Issue 3
  • DOI: 10.1038/ismej.2015.139

New perspectives on anaerobic methane oxidation
journal, October 2000


Substantial 13 C/ 12 C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro : Isotope fractionation during AOM
journal, September 2009


Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments
journal, May 2002

  • Orphan, V. J.; House, C. H.; Hinrichs, K.-U.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 11, p. 7663-7668
  • DOI: 10.1073/pnas.072210299

Reverse Methanogenesis and Respiration in Methanotrophic Archaea
journal, January 2017

  • Timmers, Peer H. A.; Welte, Cornelia U.; Koehorst, Jasper J.
  • Archaea, Vol. 2017
  • DOI: 10.1155/2017/1654237

Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic and physical constraints
journal, December 2009

  • Alperin, M. J.; Hoehler, T. M.
  • American Journal of Science, Vol. 309, Issue 10
  • DOI: 10.2475/10.2009.01

Single cell activity reveals direct electron transfer in methanotrophic consortia
journal, September 2015

  • McGlynn, Shawn E.; Chadwick, Grayson L.; Kempes, Christopher P.
  • Nature, Vol. 526, Issue 7574
  • DOI: 10.1038/nature15512

Methane emission and consumption at a North Sea gas seep (Tommeliten area)
journal, January 2005


Methane consumption in Cariaco Trench waters and sediments
journal, January 1976


Methyl sulfides as intermediates in the anaerobic oxidation of methane
journal, September 2007


On the electrical conductivity of microbial nanowires and biofilms
journal, January 2011

  • Strycharz-Glaven, Sarah M.; Snider, Rachel M.; Guiseppi-Elie, Anthony
  • Energy & Environmental Science, Vol. 4, Issue 11
  • DOI: 10.1039/c1ee01753e

Proton Transport in the Outer-Membrane Flavocytochrome Complex Limits the Rate of Extracellular Electron Transport
journal, June 2017

  • Okamoto, Akihiro; Tokunou, Yoshihide; Kalathil, Shafeer
  • Angewandte Chemie International Edition, Vol. 56, Issue 31
  • DOI: 10.1002/anie.201704241

Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean
journal, January 2003

  • Treude, T.; Boetius, A.; Knittel, K.
  • Marine Ecology Progress Series, Vol. 264
  • DOI: 10.3354/meps264001

Spatial distribution of nitrogen fixation in methane seep sediment and the role of the ANME archaea: Nitrogen fixation in methane seep sediment
journal, September 2013

  • Dekas, Anne E.; Chadwick, Grayson L.; Bowles, Marshall W.
  • Environmental Microbiology, Vol. 16, Issue 10
  • DOI: 10.1111/1462-2920.12247

Extracellular electron transfer via microbial nanowires
journal, June 2005

  • Reguera, Gemma; McCarthy, Kevin D.; Mehta, Teena
  • Nature, Vol. 435, Issue 7045, p. 1098-1101
  • DOI: 10.1038/nature03661

Oceanic Methane Biogeochemistry
journal, February 2007


The Ongoing Mystery of Sea-Floor Methane
journal, July 2010


Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy
journal, October 2014

  • Malvankar, Nikhil S.; Yalcin, Sibel Ebru; Tuominen, Mark T.
  • Nature Nanotechnology, Vol. 9, Issue 12
  • DOI: 10.1038/nnano.2014.236

Energy and entropy balance of ATP synthesis
journal, December 1997


In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area
journal, May 2002


Dual nutrient limited growth: models, experimental observations, and applications
journal, September 2004


Diversity and Distribution of Methanotrophic Archaea at Cold Seeps
journal, January 2005


In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats
journal, February 2006

  • Steunou, Anne-Soisig; Bhaya, Devaki; Bateson, Mary M.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 7
  • DOI: 10.1073/pnas.0507513103

Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage
journal, July 2013

  • Haroon, Mohamed F.; Hu, Shihu; Shi, Ying
  • Nature, Vol. 500, Issue 7464
  • DOI: 10.1038/nature12375

Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments
journal, April 2001


Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia: Interspecies interaction within AOM consortia
journal, April 2018

  • Krukenberg, Viola; Riedel, Dietmar; Gruber-Vodicka, Harald R.
  • Environmental Microbiology, Vol. 20, Issue 5
  • DOI: 10.1111/1462-2920.14077

The thermodynamics and kinetics of microbial metabolism
journal, April 2007

  • Jin, Q.; Bethke, C. M.
  • American Journal of Science, Vol. 307, Issue 4
  • DOI: 10.2475/04.2007.01

A framework for modeling electroactive microbial biofilms performing direct electron transfer
journal, December 2015


Iron-Coupled Anaerobic Oxidation of Methane Performed by a Mixed Bacterial-Archaeal Community Based on Poorly Reactive Minerals
journal, October 2017

  • Bar-Or, Itay; Elvert, Marcus; Eckert, Werner
  • Environmental Science & Technology, Vol. 51, Issue 21
  • DOI: 10.1021/acs.est.7b03126

A marine microbial consortium apparently mediating anaerobic oxidation of methane
journal, October 2000

  • Boetius, Antje; Ravenschlag, Katrin; Schubert, Carsten J.
  • Nature, Vol. 407, Issue 6804
  • DOI: 10.1038/35036572

Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group
journal, February 2010


Dimethyl sulphide and methanethiol formation in microbial mats: potential pathways for biogenic signatures
journal, April 2003


The Molecular Density of States in Bacterial Nanowires
journal, July 2008


The continuum heterogeneous biofilm model with multiple limiting substrate Monod kinetics: Continuum Biofilm Multiple-Substrate Limitations
journal, July 2014

  • Gonzo, Elio Emilio; Wuertz, Stefan; Rajal, Veronica B.
  • Biotechnology and Bioengineering, Vol. 111, Issue 11
  • DOI: 10.1002/bit.25284

Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions
journal, October 2005

  • Gupta, N.; Gattrell, M.; MacDougall, B.
  • Journal of Applied Electrochemistry, Vol. 36, Issue 2
  • DOI: 10.1007/s10800-005-9058-y

Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1
journal, October 2010

  • El-Naggar, M. Y.; Wanger, G.; Leung, K. M.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 42
  • DOI: 10.1073/pnas.1004880107

Zero-valent sulphur is a key intermediate in marine methane oxidation
journal, November 2012

  • Milucka, Jana; Ferdelman, Timothy G.; Polerecky, Lubos
  • Nature, Vol. 491, Issue 7425
  • DOI: 10.1038/nature11656

Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria
journal, October 2015

  • Wegener, Gunter; Krukenberg, Viola; Riedel, Dietmar
  • Nature, Vol. 526, Issue 7574
  • DOI: 10.1038/nature15733

Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea
journal, January 2017


Electric Field Driven Protonation/Deprotonation of Self-Assembled Monolayers of Acid-Terminated Thiols
journal, April 2006

  • Burgess, Ian; Seivewright, Brian; Lennox, R. Bruce
  • Langmuir, Vol. 22, Issue 9
  • DOI: 10.1021/la052767g

The geochemical fingerprint of microbial long-distance electron transport in the seafloor
journal, March 2015

  • Meysman, Filip J. R.; Risgaard-Petersen, Nils; Malkin, Sairah Y.
  • Geochimica et Cosmochimica Acta, Vol. 152
  • DOI: 10.1016/j.gca.2014.12.014

Cytochromes c in Archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis
journal, May 2015


The double substrate growth kinetics of Pseudomonas aeruginosa
journal, January 2003


A New Rate Law Describing Microbial Respiration
journal, April 2003


Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities
journal, January 2005


Proton Transport in the Outer‐Membrane Flavocytochrome Complex Limits the Rate of Extracellular Electron Transport
journal, June 2017

  • Okamoto, Akihiro; Tokunou, Yoshihide; Kalathil, Shafeer
  • Angewandte Chemie, Vol. 129, Issue 31
  • DOI: 10.1002/ange.201704241

Oceanic Methane Biogeochemistry
journal, May 2007


Works referencing / citing this record:

Microbial and Reactive Transport Modeling Evidence for Hyporheic Flux‐Driven Cryptic Sulfur Cycling and Anaerobic Methane Oxidation in a Sulfate‐Impacted Wetland‐Stream System
journal, January 2020

  • Ng, Gene‐Hua Crystal; Rosenfeld, Carla E.; Santelli, Cara M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 125, Issue 2
  • DOI: 10.1029/2019jg005185