skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy

Abstract

An in-depth understanding of material behaviours under complex electrochemical environment is critical for the development of advanced materials for the next-generation rechargeable ion batteries. The dynamic conditions inside a working battery had not been intensively explored until the advent of various in situ characterization techniques. Real-time transmission electron microscopy of electrochemical reactions is one of the most significant breakthroughs poised to enable radical shift in our knowledge on how materials behave in the electrochemical environment. This review, therefore, summarizes the scientific discoveries enabled by in situ transmission electron microscopy, and specifically emphasizes the applicability of this technique to address the critical challenges in the rechargeable ion battery electrodes, electrolyte and their interfaces. New electrochemical systems such as lithium–oxygen, lithium–sulfur and sodium ion batteries are included, considering the rapidly increasing application of in situ transmission electron microscopy in these areas. A systematic comparison between lithium ion-based electrochemistry and sodium ion-based electrochemistry is also given in terms of their thermodynamic and kinetic differences. The effect of the electron beam on the validity of in situ observation is also covered. This review concludes by providing a renewed perspective for the future directions of in situ transmission electron microscopy in rechargeable ion batteries.

Authors:
 [1];  [2];  [2];  [3]
  1. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Illinois, Chicago, IL (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
  3. Univ. of Illinois, Chicago, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Electrical Energy Storage (CEES)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1491809
Grant/Contract Number:  
[AC02-06CH11357]
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
[ Journal Volume: 8]; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 25 ENERGY STORAGE

Citation Formats

Yuan, Yifei, Amine, Khalil, Lu, Jun, and Shahbazian-Yassar, Reza. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. United States: N. p., 2017. Web. doi:10.1038/ncomms15806.
Yuan, Yifei, Amine, Khalil, Lu, Jun, & Shahbazian-Yassar, Reza. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. United States. doi:10.1038/ncomms15806.
Yuan, Yifei, Amine, Khalil, Lu, Jun, and Shahbazian-Yassar, Reza. Fri . "Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy". United States. doi:10.1038/ncomms15806. https://www.osti.gov/servlets/purl/1491809.
@article{osti_1491809,
title = {Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy},
author = {Yuan, Yifei and Amine, Khalil and Lu, Jun and Shahbazian-Yassar, Reza},
abstractNote = {An in-depth understanding of material behaviours under complex electrochemical environment is critical for the development of advanced materials for the next-generation rechargeable ion batteries. The dynamic conditions inside a working battery had not been intensively explored until the advent of various in situ characterization techniques. Real-time transmission electron microscopy of electrochemical reactions is one of the most significant breakthroughs poised to enable radical shift in our knowledge on how materials behave in the electrochemical environment. This review, therefore, summarizes the scientific discoveries enabled by in situ transmission electron microscopy, and specifically emphasizes the applicability of this technique to address the critical challenges in the rechargeable ion battery electrodes, electrolyte and their interfaces. New electrochemical systems such as lithium–oxygen, lithium–sulfur and sodium ion batteries are included, considering the rapidly increasing application of in situ transmission electron microscopy in these areas. A systematic comparison between lithium ion-based electrochemistry and sodium ion-based electrochemistry is also given in terms of their thermodynamic and kinetic differences. The effect of the electron beam on the validity of in situ observation is also covered. This review concludes by providing a renewed perspective for the future directions of in situ transmission electron microscopy in rechargeable ion batteries.},
doi = {10.1038/ncomms15806},
journal = {Nature Communications},
number = ,
volume = [8],
place = {United States},
year = {2017},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 83 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 | Figure 1 |: Various battery challenges and battery materials investigated by in situ TEM. (a–e) A working rechargeable ion battery (centre schematic) has many problems/challenges existing in the cathode, anode and liquid/solid electrolyte (inner circle), where each case is studied by a specific in situ TEM technique (outer circle). (a)more » A solid-state open cell exploring the structure failure (volume change, and so on) in anode. This design allows high spatial resolution imaging, but its point-contact geometry is different from the real battery environment flooded with liquid electrolytes. (b) A sealed liquid-cell investigating SEI and Li dendrites’ evolution at the electrolyte/electrode interface. This design suffers from low spatial resolution, but it is a better match to the practical batteries. (c) An in situ heating stage analysing the thermal stability of metal oxide-based cathode, where surface degradation with O2 release and thermal runaway is the targeted problem. (d) An ionic liquid-based open cell studying the phase transition in metal oxide-based cathode, where detrimental phase transitions plague the overall performance. (e) A nanoscale thin-film battery studying solid-state electrolytes, where low ionic diffusivity and interface instability are the targeted problems. (f) Representative battery materials studied by in situ TEM2,8–20,26–52,54–57,59–62,65–79,82,85,103–114. NCA, NMC, LFP, LMO and LCO stand for cathodes based on Ni-Co-Al-O, Ni-Mn-Co-O, LiFePO4, Li-Mn-O and Li-Co-O, respectively. LiPON, LLZO and LATSPO stand for solid-state electrolytes based on Li-P-O-N, Li-La-Zr-O and Li-Al-Ti-Si-P-O, respectively. For A–B expression, A represents the core component and B represents the shell or substrate component. CNF represents carbon nanofibres.« less

Save / Share:

Works referenced in this record:

Nanoionics: ion transport and electrochemical storage in confined systems
journal, November 2005

  • Maier, J.
  • Nature Materials, Vol. 4, Issue 11, p. 805-815
  • DOI: 10.1038/nmat1513

In-situ Isotopic Analysis at Nanoscale using Parallel Ion Electron Spectrometry: A Powerful New Paradigm for Correlative Microscopy
journal, June 2016

  • Yedra, Lluís; Eswara, Santhana; Dowsett, David
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep28705

In situ TEM Raman spectroscopy and laser-based materials modification
journal, July 2017


Probing battery chemistry with liquid cell electron energy loss spectroscopy
journal, January 2015

  • Unocic, Raymond R.; Baggetto, Loïc; Veith, Gabriel M.
  • Chemical Communications, Vol. 51, Issue 91
  • DOI: 10.1039/C5CC07180A

In situ atomic-scale imaging of electrochemical lithiation in silicon
journal, October 2012

  • Liu, Xiao Hua; Wang, Jiang Wei; Huang, Shan
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.170

In Situ TEM Study of Lithiation Behavior of Silicon Nanoparticles Attached to and Embedded in a Carbon Matrix
journal, August 2012


In Situ TEM Observation of Electrochemical Lithiation of Sulfur Confined within Inner Cylindrical Pores of Carbon Nanotubes
journal, October 2015

  • Kim, Hyea; Lee, Jung Tae; Magasinski, Alexandre
  • Advanced Energy Materials, Vol. 5, Issue 24
  • DOI: 10.1002/aenm.201501306

Atomistic Insights into the Oriented Attachment of Tunnel-Based Oxide Nanostructures
journal, December 2015


In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode
journal, December 2010


Lithium Electrodeposition Dynamics in Aprotic Electrolyte Observed in Situ via Transmission Electron Microscopy
journal, February 2015

  • Leenheer, Andrew J.; Jungjohann, Katherine L.; Zavadil, Kevin R.
  • ACS Nano, Vol. 9, Issue 4
  • DOI: 10.1021/acsnano.5b00876

Insight into Sulfur Reactions in Li–S Batteries
journal, December 2014

  • Xu, Rui; Belharouak, Ilias; Zhang, Xiaofeng
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 24
  • DOI: 10.1021/am504763p

In Situ Transmission Electron Microscopy Study of Electrochemical Lithiation and Delithiation Cycling of the Conversion Anode RuO 2
journal, June 2013

  • Gregorczyk, Keith E.; Liu, Yang; Sullivan, John P.
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn402451s

"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries
journal, November 2015


Reversible Nanopore Formation in Ge Nanowires during Lithiation–Delithiation Cycling: An In Situ Transmission Electron Microscopy Study
journal, September 2011

  • Liu, Xiao Hua; Huang, Shan; Picraux, S. Tom
  • Nano Letters, Vol. 11, Issue 9
  • DOI: 10.1021/nl2024118

Electron–Water Interactions and Implications for Liquid Cell Electron Microscopy
journal, September 2014

  • Schneider, Nicholas M.; Norton, Michael M.; Mendel, Brian J.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 38
  • DOI: 10.1021/jp507400n

Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes
journal, January 2016


Transitions from Near-Surface to Interior Redox upon Lithiation in Conversion Electrode Materials
journal, January 2015

  • He, Kai; Xin, Huolin L.; Zhao, Kejie
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl5049884

Investigating Local Degradation and Thermal Stability of Charged Nickel-Based Cathode Materials through Real-Time Electron Microscopy
journal, August 2014

  • Hwang, Sooyeon; Kim, Seung Min; Bak, Seong-Min
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 17
  • DOI: 10.1021/am503278f

In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode
journal, January 2016

  • Zhang, Liqiang; Wang, Yuecun; Xie, Degang
  • RSC Advances, Vol. 6, Issue 14
  • DOI: 10.1039/C5RA24086G

Surface-Coating Regulated Lithiation Kinetics and Degradation in Silicon Nanowires for Lithium Ion Battery
journal, April 2015


In Situ Transmission Electron Microscopy Observations of Electrochemical Oxidation of Li 2 O 2
journal, April 2013

  • Zhong, Li; Mitchell, Robert R.; Liu, Yang
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl400731w

In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures
journal, May 2012

  • Liu, Xiao Hua; Liu, Yang; Kushima, Akihiro
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201200024

X-ray Energy-Dispersive Spectrometry During In Situ Liquid Cell Studies Using an Analytical Electron Microscope
journal, February 2014

  • Zaluzec, Nestor J.; Burke, M. Grace; Haigh, Sarah J.
  • Microscopy and Microanalysis, Vol. 20, Issue 2
  • DOI: 10.1017/S1431927614000154

Atomic-Scale Probing of the Dynamics of Sodium Transport and Intercalation-Induced Phase Transformations in MoS 2
journal, September 2015


Direct Mapping of Charge Distribution during Lithiation of Ge Nanowires Using Off-Axis Electron Holography
journal, May 2016


Germanium as a Sodium Ion Battery Material: In Situ TEM Reveals Fast Sodiation Kinetics with High Capacity
journal, February 2016


Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

Electron-Rich Driven Electrochemical Solid-State Amorphization in Li–Si Alloys
journal, August 2013

  • Wang, Zhiguo; Gu, Meng; Zhou, Yungang
  • Nano Letters, Vol. 13, Issue 9
  • DOI: 10.1021/nl402429a

Probing the Degradation Mechanisms in Electrolyte Solutions for Li-Ion Batteries by in Situ Transmission Electron Microscopy
journal, February 2014

  • Abellan, Patricia; Mehdi, B. Layla; Parent, Lucas R.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404271k

Current status and future directions for in situ transmission electron microscopy
journal, November 2016


Electrochemistry of Selenium with Sodium and Lithium: Kinetics and Reaction Mechanism
journal, August 2016


Self-Limiting Lithiation in Silicon Nanowires
journal, January 2013

  • Liu, Xiao Hua; Fan, Feifei; Yang, Hui
  • ACS Nano, Vol. 7, Issue 2
  • DOI: 10.1021/nn305282d

Atomic Mechanism of Dynamic Electrochemical Lithiation Processes of MoS 2 Nanosheets
journal, April 2014

  • Wang, Lifen; Xu, Zhi; Wang, Wenlong
  • Journal of the American Chemical Society, Vol. 136, Issue 18
  • DOI: 10.1021/ja501686w

Vibrational and optical spectroscopies integrated with environmental transmission electron microscopy
journal, March 2015


Coupling In Situ TEM and Ex Situ Analysis to Understand Heterogeneous Sodiation of Antimony
journal, September 2015


In Situ TEM Observations of Sn-Containing Silicon Nanowires Undergoing Reversible Pore Formation Due to Fast Lithiation/Delithiation Kinetics
journal, September 2015

  • Lu, Xiaotang; Bogart, Timothy D.; Gu, Meng
  • The Journal of Physical Chemistry C, Vol. 119, Issue 38
  • DOI: 10.1021/acs.jpcc.5b06386

Charging/Discharging Nanomorphology Asymmetry and Rate-Dependent Capacity Degradation in Li–Oxygen Battery
journal, November 2015


Designing nanostructured Si anodes for high energy lithium ion batteries
journal, October 2012


In Situ Atomic-Scale Imaging of Phase Boundary Migration in FePO 4 Microparticles During Electrochemical Lithiation
journal, July 2013


Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

Revealing the conversion mechanism of CuO nanowires during lithiation–delithiation by in situ transmission electron microscopy
journal, January 2012

  • Wang, Xi; Tang, Dai-Ming; Li, Huiqiao
  • Chemical Communications, Vol. 48, Issue 40
  • DOI: 10.1039/c2cc30643c

TEM in situ lithiation of tin nanoneedles for battery applications
journal, August 2015

  • Janish, Matthew T.; Mackay, David T.; Liu, Yang
  • Journal of Materials Science, Vol. 51, Issue 1
  • DOI: 10.1007/s10853-015-9318-0

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Facet-Dependent Thermal Instability in LiCoO 2
journal, March 2017


In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries
journal, May 2016


Twin Boundary-Assisted Lithium Ion Transport
journal, December 2014

  • Nie, Anmin; Gan, Li-Yong; Cheng, Yingchun
  • Nano Letters, Vol. 15, Issue 1
  • DOI: 10.1021/nl504087z

Lithiation-Induced Shuffling of Atomic Stacks
journal, August 2014

  • Nie, Anmin; Cheng, Yingchun; Zhu, Yihan
  • Nano Letters, Vol. 14, Issue 9
  • DOI: 10.1021/nl502347z

Insulator-to-metal phase transition and recovery processes in V O 2 thin films after femtosecond laser excitation
journal, July 2007


Selective Ionic Transport Pathways in Phosphorene
journal, March 2016


Microstructural Evolution of Tin Nanoparticles during In Situ Sodium Insertion and Extraction
journal, October 2012

  • Wang, Jiang Wei; Liu, Xiao Hua; Mao, Scott X.
  • Nano Letters, Vol. 12, Issue 11
  • DOI: 10.1021/nl303305c

Dynamic study of (De)sodiation in alpha-MnO2 nanowires
journal, January 2016


Nanovoid Formation and Annihilation in Gallium Nanodroplets under Lithiation–Delithiation Cycling
journal, October 2013

  • Liang, Wentao; Hong, Liang; Yang, Hui
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl402644w

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Precise In Situ Modulation of Local Liquid Chemistry via Electron Irradiation in Nanoreactors Based on Graphene Liquid Cells
journal, July 2016

  • Wang, Canhui; Shokuhfar, Tolou; Klie, Robert F.
  • Advanced Materials, Vol. 28, Issue 35
  • DOI: 10.1002/adma.201602273

In Situ Transmission Electron Microscopy Observation of Electrochemical Behavior of CoS 2 in Lithium-Ion Battery
journal, January 2014

  • Su, Qingmei; Xie, Jian; Zhang, Jun
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 4
  • DOI: 10.1021/am4056084

Thermal annealing dynamics of carbon-coated LiFePO4 nanoparticles studied by in-situ analysis
journal, October 2016

  • Krumeich, Frank; Waser, Oliver; Pratsinis, Sotiris E.
  • Journal of Solid State Chemistry, Vol. 242
  • DOI: 10.1016/j.jssc.2016.07.002

Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte
journal, February 2014

  • Holtz, Megan E.; Yu, Yingchao; Gunceler, Deniz
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404577c

New Horizons for Conventional Lithium Ion Battery Technology
journal, September 2014

  • Erickson, Evan M.; Ghanty, Chandan; Aurbach, Doron
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 19
  • DOI: 10.1021/jz501387m

An ultrafast rechargeable aluminium-ion battery
journal, April 2015

  • Lin, Meng-Chang; Gong, Ming; Lu, Bingan
  • Nature, Vol. 520, Issue 7547
  • DOI: 10.1038/nature14340

Tracking lithium transport and electrochemical reactions in nanoparticles
journal, January 2012

  • Wang, Feng; Yu, Hui-Chia; Chen, Min-Hua
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2185

Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclusters
journal, February 2015

  • Sacci, Robert L.; Black, Jennifer M.; Balke, Nina
  • Nano Letters, Vol. 15, Issue 3
  • DOI: 10.1021/nl5048626

Interfacial stabilizing effect of ZnO on Si anodes for lithium ion battery
journal, April 2015


Sodiation via Heterogeneous Disproportionation in FeF 2 Electrodes for Sodium-Ion Batteries
journal, June 2014

  • He, Kai; Zhou, Yongning; Gao, Peng
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn502284y

Atomic Resolution Study of Reversible Conversion Reaction in Metal Oxide Electrodes for Lithium-Ion Battery
journal, October 2014

  • Luo, Langli; Wu, Jinsong; Xu, Junming
  • ACS Nano, Vol. 8, Issue 11
  • DOI: 10.1021/nn504806h

Dynamic Visualization of the Electric Potential in an All-Solid-State Rechargeable Lithium Battery
journal, June 2010

  • Yamamoto, Kazuo; Iriyama, Yasutoshi; Asaka, Toru
  • Angewandte Chemie International Edition, Vol. 49, Issue 26
  • DOI: 10.1002/anie.200907319

Probing the Failure Mechanism of SnO 2 Nanowires for Sodium-Ion Batteries
journal, October 2013

  • Gu, Meng; Kushima, Akihiro; Shao, Yuyan
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl402633n

Opportunities and challenges in liquid cell electron microscopy
journal, December 2015


Direct Imaging of Transient Molecular Structures with Ultrafast Diffraction
journal, January 2001


Phase Boundary Propagation in Li-Alloying Battery Electrodes Revealed by Liquid-Cell Transmission Electron Microscopy
journal, May 2016

  • Leenheer, Andrew J.; Jungjohann, Katherine L.; Zavadil, Kevin R.
  • ACS Nano, Vol. 10, Issue 6
  • DOI: 10.1021/acsnano.6b02200

A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries
journal, September 2015


In Situ Observation of Random Solid Solution Zone in LiFePO 4 Electrode
journal, June 2014

  • Niu, Junjie; Kushima, Akihiro; Qian, Xiaofeng
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl501415b

Observation and Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEM
journal, February 2015


Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges
journal, October 2015


Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Asynchronous Crystal Cell Expansion during Lithiation of K + -Stabilized α-MnO 2
journal, April 2015

  • Yuan, Yifei; Nie, Anmin; Odegard, Gregory M.
  • Nano Letters, Vol. 15, Issue 5
  • DOI: 10.1021/nl5048913

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

Visualizing the roles of graphene for excellent lithium storage
journal, January 2014

  • Shan, Xu-Yi; Zhou, Guangmin; Yin, Li-Chang
  • J. Mater. Chem. A, Vol. 2, Issue 42
  • DOI: 10.1039/C4TA04460F

Ultrafast and Highly Reversible Sodium Storage in Zinc-Antimony Intermetallic Nanomaterials
journal, December 2015

  • Nie, Anmin; Gan, Li-yong; Cheng, Yingchun
  • Advanced Functional Materials, Vol. 26, Issue 4
  • DOI: 10.1002/adfm.201504461

Phase Transitions in a LiMn 2 O 4 Nanowire Battery Observed by Operando Electron Microscopy
journal, December 2014

  • Lee, Soyeon; Oshima, Yoshifumi; Hosono, Eiji
  • ACS Nano, Vol. 9, Issue 1
  • DOI: 10.1021/nn505952k

Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO 2 Nanotubes
journal, February 2014

  • Gao, Qi; Gu, Meng; Nie, Anmin
  • Chemistry of Materials, Vol. 26, Issue 4
  • DOI: 10.1021/cm403951b

Sodiation Kinetics of Metal Oxide Conversion Electrodes: A Comparative Study with Lithiation
journal, August 2015


Design principles for solid-state lithium superionic conductors
journal, August 2015

  • Wang, Yan; Richards, William Davidson; Ong, Shyue Ping
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4369

Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy
journal, May 2016

  • He, Kai; Zhang, Sen; Li, Jing
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11441

Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation
journal, August 2011

  • Liu, Xiao Hua; Zheng, He; Zhong, Li
  • Nano Letters, Vol. 11, Issue 8, p. 3312-3318
  • DOI: 10.1021/nl201684d

In Situ Transmission Electron Microscopy Study of Electrochemical Sodiation and Potassiation of Carbon Nanofibers
journal, May 2014

  • Liu, Ying; Fan, Feifei; Wang, Jiangwei
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl500970a

Interfacial Stability of Li Metal–Solid Electrolyte Elucidated via in Situ Electron Microscopy
journal, October 2016


Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy
journal, January 2014

  • Sacci, Robert L.; Dudney, Nancy J.; More, Karren L.
  • Chemical Communications, Vol. 50, Issue 17
  • DOI: 10.1039/c3cc49029g

Radiation damage in the TEM and SEM
journal, August 2004


Tailoring Lithiation Behavior by Interface and Bandgap Engineering at the Nanoscale
journal, September 2013

  • Liu, Yang; Liu, Xiao Hua; Nguyen, Binh-Minh
  • Nano Letters, Vol. 13, Issue 10
  • DOI: 10.1021/nl4027549

Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
journal, January 2012

  • Liu, Xiao Hua; Zhong, Li; Huang, Shan
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204476h

Atomistic Conversion Reaction Mechanism of WO 3 in Secondary Ion Batteries of Li, Na, and Ca
journal, April 2016

  • He, Yang; Gu, Meng; Xiao, Haiyan
  • Angewandte Chemie International Edition, Vol. 55, Issue 21
  • DOI: 10.1002/anie.201601542

Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries
journal, December 2011

  • Ruzmetov, Dmitry; Oleshko, Vladimir P.; Haney, Paul M.
  • Nano Letters, Vol. 12, Issue 1
  • DOI: 10.1021/nl204047z

High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells
journal, April 2012


A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
journal, February 2014


A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes
journal, May 2012

  • Liu, Nian; Wu, Hui; McDowell, Matthew T.
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl3014814

Visualization of Electrode–Electrolyte Interfaces in LiPF 6 /EC/DEC Electrolyte for Lithium Ion Batteries via in Situ TEM
journal, March 2014

  • Zeng, Zhiyuan; Liang, Wen-I; Liao, Hong-Gang
  • Nano Letters, Vol. 14, Issue 4
  • DOI: 10.1021/nl403922u

Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes
journal, July 2014

  • Li, Xiaolin; Gu, Meng; Hu, Shenyang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5105

Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
journal, June 2013

  • Wu, Hui; Yu, Guihua; Pan, Lijia
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2941

    Works referencing / citing this record:

    Understanding Challenges of Cathode Materials for Sodium‐Ion Batteries using Synchrotron‐Based X‐Ray Absorption Spectroscopy
    journal, July 2019

    • Chen, Mingzhe; Chou, Shu‐Lei; Dou, Shi‐Xue
    • Batteries & Supercaps, Vol. 2, Issue 10
    • DOI: 10.1002/batt.201900054

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.