skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced energy coupling for indirectly driven inertial confinement fusion

Abstract

The indirect drive scheme for inertial confinement fusion (ICF) employs x-rays generated within a high-Z cavity (hohlraum) to implode an embedded low-Z capsule filled with deuterium- tritium (DT) fuel to reach the high density and temperature required for thermonuclear burn. Recently, several cylinder hohlraum experiments on the National Ignition Facility (NIF) have reached the alpha-heating regime [1] where the self-heating by fusion products becomes dominant, producing neutron yields above 1 1016 [2{ 4]. However, there are still challenges on the path towards ignition, such as symmetry control, instability minimization and engineering feature mitigation [5]. Energy coupling from a cylindrical hohlraum to the capsule is typically less than 10%, or 150 kJ for a 1.9 MJ laser drive [1], thereby limiting the energy available in the final hot spot for fusion. Here we report the first experiment on NIF demonstrating 30% energy coupling to an Al capsule in a rugby-shaped Au hohlraum [6]. This high coupling efficiency can substantially enhance the performance margin and improve the prospects for ignition, both in mainline single- shell hot-spot designs and potential double-shell targets.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1] more »;  [2];  [2];  [2] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1491646
Alternate Identifier(s):
OSTI ID: 1507330
Report Number(s):
LLNL-JRNL-745363; LA-UR-18-21219
Journal ID: ISSN 1745-2473; 900301
Grant/Contract Number:  
AC52-07NA27344; 89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Nature Physics
Additional Journal Information:
Journal Volume: 15; Journal ID: ISSN 1745-2473
Publisher:
Nature Publishing Group (NPG)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Ping, Y., Smalyuk, V. A., Amendt, P., Tommasini, R., Field, J. E., Khan, S., Bennett, D., Dewald, E., Graziani, F., Johnson, S., Landen, O. L., MacPhee, A. G., Nikroo, A., Pino, J., Prisbrey, S., Ralph, J., Seugling, R., Strozzi, D., Tipton, R. E., Wang, Y. M., Loomis, E., Merritt, E., and Montgomery, D.. Enhanced energy coupling for indirectly driven inertial confinement fusion. United States: N. p., 2018. Web. doi:10.1038/s41567-018-0331-5.
Ping, Y., Smalyuk, V. A., Amendt, P., Tommasini, R., Field, J. E., Khan, S., Bennett, D., Dewald, E., Graziani, F., Johnson, S., Landen, O. L., MacPhee, A. G., Nikroo, A., Pino, J., Prisbrey, S., Ralph, J., Seugling, R., Strozzi, D., Tipton, R. E., Wang, Y. M., Loomis, E., Merritt, E., & Montgomery, D.. Enhanced energy coupling for indirectly driven inertial confinement fusion. United States. doi:10.1038/s41567-018-0331-5.
Ping, Y., Smalyuk, V. A., Amendt, P., Tommasini, R., Field, J. E., Khan, S., Bennett, D., Dewald, E., Graziani, F., Johnson, S., Landen, O. L., MacPhee, A. G., Nikroo, A., Pino, J., Prisbrey, S., Ralph, J., Seugling, R., Strozzi, D., Tipton, R. E., Wang, Y. M., Loomis, E., Merritt, E., and Montgomery, D.. Mon . "Enhanced energy coupling for indirectly driven inertial confinement fusion". United States. doi:10.1038/s41567-018-0331-5. https://www.osti.gov/servlets/purl/1491646.
@article{osti_1491646,
title = {Enhanced energy coupling for indirectly driven inertial confinement fusion},
author = {Ping, Y. and Smalyuk, V. A. and Amendt, P. and Tommasini, R. and Field, J. E. and Khan, S. and Bennett, D. and Dewald, E. and Graziani, F. and Johnson, S. and Landen, O. L. and MacPhee, A. G. and Nikroo, A. and Pino, J. and Prisbrey, S. and Ralph, J. and Seugling, R. and Strozzi, D. and Tipton, R. E. and Wang, Y. M. and Loomis, E. and Merritt, E. and Montgomery, D.},
abstractNote = {The indirect drive scheme for inertial confinement fusion (ICF) employs x-rays generated within a high-Z cavity (hohlraum) to implode an embedded low-Z capsule filled with deuterium- tritium (DT) fuel to reach the high density and temperature required for thermonuclear burn. Recently, several cylinder hohlraum experiments on the National Ignition Facility (NIF) have reached the alpha-heating regime [1] where the self-heating by fusion products becomes dominant, producing neutron yields above 1 1016 [2{ 4]. However, there are still challenges on the path towards ignition, such as symmetry control, instability minimization and engineering feature mitigation [5]. Energy coupling from a cylindrical hohlraum to the capsule is typically less than 10%, or 150 kJ for a 1.9 MJ laser drive [1], thereby limiting the energy available in the final hot spot for fusion. Here we report the first experiment on NIF demonstrating 30% energy coupling to an Al capsule in a rugby-shaped Au hohlraum [6]. This high coupling efficiency can substantially enhance the performance margin and improve the prospects for ignition, both in mainline single- shell hot-spot designs and potential double-shell targets.},
doi = {10.1038/s41567-018-0331-5},
journal = {Nature Physics},
number = ,
volume = 15,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0