skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pathways to electrochemical solar-hydrogen technologies

Abstract

Solar-powered electrochemical production of hydrogen through water electrolysis is an active and important research endeavor. However, technologies and roadmaps for implementation of this process do not exist. In this perspective paper, we describe potential pathways for solar-hydrogen technologies into the marketplace in the form of photoelectrochemical or photovoltaic-driven electrolysis devices and systems. We detail technical approaches for device and system architectures, economic drivers, societal perceptions, political impacts, technological challenges, and research opportunities. Implementation scenarios are broken down into short-term and long-term markets, and a specific technology roadmap is defined. In the short term, the only plausible economical option will be photovoltaic-driven electrolysis systems for niche applications. In the long term, electrochemical solar-hydrogen technologies could be deployed more broadly in energy markets but will require advances in the technology, significant cost reductions, and/or policy changes. Ultimately, a transition to a society that significantly relies on solar-hydrogen technologies will benefit from continued creativity and influence from the scientific community.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [4]; ORCiD logo [5];  [6]; ORCiD logo [7]; ORCiD logo [8];  [9]; ORCiD logo [10]; ORCiD logo [11];  [12]; ORCiD logo [13];  [14];  [15];  [16]; ORCiD logo [17]; ORCiD logo [18]; ORCiD logo [2];  [15] more »;  [19]; ORCiD logo [20]; ORCiD logo [21]; ORCiD logo [22];  [23];  [4];  [24];  [22]; ORCiD logo [25]; ORCiD logo [26];  [27]; ORCiD logo [28];  [29];  [30];  [30]; ORCiD logo [31];  [32];  [33]; ORCiD logo [34]; ORCiD logo [15]; ORCiD logo [35]; ORCiD logo [36]; ORCiD logo [5]; ORCiD logo [33]; ORCiD logo [2] « less
  1. Univ. of California, Irvine, CA (United States). Dept. of Chemistry, and Dept. of Chemical Engineering and Materials Science
  2. Univ. of Twente, Enschede (Netherlands). MESA+ Inst. for Nanotechnology, Mesoscale Chemical Systems Group
  3. New York Univ. (NYU), NY (United States). Dept. of Chemical and Biomolecular Engineering
  4. Univ. of Twente, Enschede (Netherlands). Dept. of Science, Technology and Policy Studies
  5. Helmholtz-Zentrum Berlin (HZB), (Germany). German Research Centre for Materials and Energy, Inst. for Solar Fuels
  6. Amolf Inst., Center for Nanophotonics, Amsterdam, (The Netherlands)
  7. Univ. of Grenoble Alpes (France). Lab. de Chimie et Biologie des Métaux
  8. Proton OnSite, Wallingford, CT (United States)
  9. Empa, Swiss Federal Lab. for Materials Science and Technology, Dübendorf (Switzerland)
  10. Forschungszentrum Julich (Germany)
  11. Univ. of Groningen, Groningen (The Netherlands). Zernike Inst. for Advanced Materials
  12. Air Products and Chemicals, Inc., Allentown, PA (United States)
  13. Univ. of Leiden, Leiden (The Netherlands). Leiden Inst. of Chemistry
  14. Ecole Polytechnique Federale Lausanne (Switzlerland). Lab. of Applied Photonics Devices (LAPD)
  15. Delft Univ. of Technology (Netherlands). Materials for Energy Conversion and Storage (MECS), Dept. of Chemical Engineering
  16. Eindhoven Univ. of Technology, Eindhoven (The Netherlands). Dept. of Applied Physics
  17. Uppsala Univ., Uppsala (Sweden). Dept. of Engineering Sciences – Solid State Physics
  18. Univ. of Kitakyushu, Wakamatsu-ku, Kitakyushu (Japan). Inst. of Environmental Science and Technology
  19. Ecole Polytechnique Federale Lausanne (Switzlerland). Optics Lab. (LO)
  20. Ecole Polytechnique Federale Lausanne (Switzlerland). Lab. of Renewable Energy Science and Engineering (LRESE)
  21. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis and Chemical Sciences Division
  22. Univ. of Twente, Enschede (Netherlands). MESA+ Inst. for Nanotechnology, Molecular Nanofabrication Group
  23. Tokyo Univ. of Science, Tokyo (Japan). Faculty of Science, Dept. of Applied Chemistry
  24. Tokyo Univ. of Science, Tokyo (Japan). Dept. of Applied Chemistry
  25. Univ. of Twente, Enschede (Netherlands). MESA+ Inst. for Nanotechnology, Physics of Fluids Group
  26. Univ. of Twente, Enschede (Netherlands). MESA+ Inst. for Nanotechnology, Photocatalytic Synthesis Group
  27. Dept. of Energy (DOE), Washington DC (United States). Office of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Office
  28. Arizona State Univ., Tempe, AZ (United States). School of Molecular Sciences, Biodesign Center for Applied Structural Discovery (CASD)
  29. Inst. for Energiteknikk, Kjeller (Norway)
  30. Univ. of Cambridge (United Kingdom). Dept. of Chemistry
  31. California Inst. of Technology (CalTech), Pasadena, CA (United States). Division of Engineering and Applied Sciences
  32. Swiss Center for Electronics and Microtechnology (CSEM), PV Center, Neuchâtel (Switzerland)
  33. Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Physics
  34. Catalytic Innovations, Fall River, MA (United States)
  35. Univ. of Louisville, KY (United States). Conn Center for Renewable Energy Research
  36. Drexel Univ., Philadelphia, PA (United States). Chemical and Biological Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Office (EE-3F)
OSTI Identifier:
1491361
Alternate Identifier(s):
OSTI ID: 1459716
Grant/Contract Number:  
AC02-05CH11231; EE0006963; SC0004993
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 11; Journal Issue: 10; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY

Citation Formats

Ardo, Shane, Fernandez Rivas, David, Modestino, Miguel A., Schulze Greiving, Verena, Abdi, Fatwa F., Alarcon Llado, Esther, Artero, Vincent, Ayers, Katherine, Battaglia, Corsin, Becker, Jan-Philipp, Bederak, Dmytro, Berger, Alan, Buda, Francesco, Chinello, Enrico, Dam, Bernard, Di Palma, Valerio, Edvinsson, Tomas, Fujii, Katsushi, Gardeniers, Han, Geerlings, Hans, H. Hashemi, S. Mohammad, Haussener, Sophia, Houle, Frances, Huskens, Jurriaan, James, Brian D., Konrad, Kornelia, Kudo, Akihiko, Kunturu, Pramod Patil, Lohse, Detlef, Mei, Bastian, Miller, Eric L., Moore, Gary F., Muller, Jiri, Orchard, Katherine L., Rosser, Timothy E., Saadi, Fadl H., Schüttauf, Jan-Willem, Seger, Brian, Sheehan, Stafford W., Smith, Wilson A., Spurgeon, Joshua, Tang, Maureen H., van de Krol, Roel, Vesborg, Peter C. K., and Westerik, Pieter. Pathways to electrochemical solar-hydrogen technologies. United States: N. p., 2018. Web. doi:10.1039/c7ee03639f.
Ardo, Shane, Fernandez Rivas, David, Modestino, Miguel A., Schulze Greiving, Verena, Abdi, Fatwa F., Alarcon Llado, Esther, Artero, Vincent, Ayers, Katherine, Battaglia, Corsin, Becker, Jan-Philipp, Bederak, Dmytro, Berger, Alan, Buda, Francesco, Chinello, Enrico, Dam, Bernard, Di Palma, Valerio, Edvinsson, Tomas, Fujii, Katsushi, Gardeniers, Han, Geerlings, Hans, H. Hashemi, S. Mohammad, Haussener, Sophia, Houle, Frances, Huskens, Jurriaan, James, Brian D., Konrad, Kornelia, Kudo, Akihiko, Kunturu, Pramod Patil, Lohse, Detlef, Mei, Bastian, Miller, Eric L., Moore, Gary F., Muller, Jiri, Orchard, Katherine L., Rosser, Timothy E., Saadi, Fadl H., Schüttauf, Jan-Willem, Seger, Brian, Sheehan, Stafford W., Smith, Wilson A., Spurgeon, Joshua, Tang, Maureen H., van de Krol, Roel, Vesborg, Peter C. K., & Westerik, Pieter. Pathways to electrochemical solar-hydrogen technologies. United States. doi:10.1039/c7ee03639f.
Ardo, Shane, Fernandez Rivas, David, Modestino, Miguel A., Schulze Greiving, Verena, Abdi, Fatwa F., Alarcon Llado, Esther, Artero, Vincent, Ayers, Katherine, Battaglia, Corsin, Becker, Jan-Philipp, Bederak, Dmytro, Berger, Alan, Buda, Francesco, Chinello, Enrico, Dam, Bernard, Di Palma, Valerio, Edvinsson, Tomas, Fujii, Katsushi, Gardeniers, Han, Geerlings, Hans, H. Hashemi, S. Mohammad, Haussener, Sophia, Houle, Frances, Huskens, Jurriaan, James, Brian D., Konrad, Kornelia, Kudo, Akihiko, Kunturu, Pramod Patil, Lohse, Detlef, Mei, Bastian, Miller, Eric L., Moore, Gary F., Muller, Jiri, Orchard, Katherine L., Rosser, Timothy E., Saadi, Fadl H., Schüttauf, Jan-Willem, Seger, Brian, Sheehan, Stafford W., Smith, Wilson A., Spurgeon, Joshua, Tang, Maureen H., van de Krol, Roel, Vesborg, Peter C. K., and Westerik, Pieter. Fri . "Pathways to electrochemical solar-hydrogen technologies". United States. doi:10.1039/c7ee03639f. https://www.osti.gov/servlets/purl/1491361.
@article{osti_1491361,
title = {Pathways to electrochemical solar-hydrogen technologies},
author = {Ardo, Shane and Fernandez Rivas, David and Modestino, Miguel A. and Schulze Greiving, Verena and Abdi, Fatwa F. and Alarcon Llado, Esther and Artero, Vincent and Ayers, Katherine and Battaglia, Corsin and Becker, Jan-Philipp and Bederak, Dmytro and Berger, Alan and Buda, Francesco and Chinello, Enrico and Dam, Bernard and Di Palma, Valerio and Edvinsson, Tomas and Fujii, Katsushi and Gardeniers, Han and Geerlings, Hans and H. Hashemi, S. Mohammad and Haussener, Sophia and Houle, Frances and Huskens, Jurriaan and James, Brian D. and Konrad, Kornelia and Kudo, Akihiko and Kunturu, Pramod Patil and Lohse, Detlef and Mei, Bastian and Miller, Eric L. and Moore, Gary F. and Muller, Jiri and Orchard, Katherine L. and Rosser, Timothy E. and Saadi, Fadl H. and Schüttauf, Jan-Willem and Seger, Brian and Sheehan, Stafford W. and Smith, Wilson A. and Spurgeon, Joshua and Tang, Maureen H. and van de Krol, Roel and Vesborg, Peter C. K. and Westerik, Pieter},
abstractNote = {Solar-powered electrochemical production of hydrogen through water electrolysis is an active and important research endeavor. However, technologies and roadmaps for implementation of this process do not exist. In this perspective paper, we describe potential pathways for solar-hydrogen technologies into the marketplace in the form of photoelectrochemical or photovoltaic-driven electrolysis devices and systems. We detail technical approaches for device and system architectures, economic drivers, societal perceptions, political impacts, technological challenges, and research opportunities. Implementation scenarios are broken down into short-term and long-term markets, and a specific technology roadmap is defined. In the short term, the only plausible economical option will be photovoltaic-driven electrolysis systems for niche applications. In the long term, electrochemical solar-hydrogen technologies could be deployed more broadly in energy markets but will require advances in the technology, significant cost reductions, and/or policy changes. Ultimately, a transition to a society that significantly relies on solar-hydrogen technologies will benefit from continued creativity and influence from the scientific community.},
doi = {10.1039/c7ee03639f},
journal = {Energy & Environmental Science},
number = 10,
volume = 11,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Anion-exchange membranes in electrochemical energy systems
journal, January 2014

  • Varcoe, John R.; Atanassov, Plamen; Dekel, Dario R.
  • Energy & Environmental Science, Vol. 7, Issue 10, p. 3135-3191
  • DOI: 10.1039/C4EE01303D

Anion exchange membranes for alkaline fuel cells: A review
journal, July 2011

  • Merle, G�raldine; Wessling, Matthias; Nijmeijer, Kitty
  • Journal of Membrane Science, Vol. 377, Issue 1-2, p. 1-35
  • DOI: 10.1016/j.memsci.2011.04.043

A comprehensive review on PEM water electrolysis
journal, April 2013

  • Carmo, Marcelo; Fritz, David L.; Mergel, J�rgen
  • International Journal of Hydrogen Energy, Vol. 38, Issue 12, p. 4901-4934
  • DOI: 10.1016/j.ijhydene.2013.01.151