DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pathways to electrochemical solar-hydrogen technologies

Abstract

Solar-powered electrochemical production of hydrogen through water electrolysis is an active and important research endeavor. However, technologies and roadmaps for implementation of this process do not exist. In this perspective paper, we describe potential pathways for solar-hydrogen technologies into the marketplace in the form of photoelectrochemical or photovoltaic-driven electrolysis devices and systems. We detail technical approaches for device and system architectures, economic drivers, societal perceptions, political impacts, technological challenges, and research opportunities. Implementation scenarios are broken down into short-term and long-term markets, and a specific technology roadmap is defined. In the short term, the only plausible economical option will be photovoltaic-driven electrolysis systems for niche applications. In the long term, electrochemical solar-hydrogen technologies could be deployed more broadly in energy markets but will require advances in the technology, significant cost reductions, and/or policy changes. Ultimately, a transition to a society that significantly relies on solar-hydrogen technologies will benefit from continued creativity and influence from the scientific community.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [4]; ORCiD logo [5];  [6]; ORCiD logo [7]; ORCiD logo [8];  [9]; ORCiD logo [10]; ORCiD logo [11];  [12]; ORCiD logo [13];  [14];  [15];  [16]; ORCiD logo [17]; ORCiD logo [18]; ORCiD logo [2];  [15] more »;  [19]; ORCiD logo [20]; ORCiD logo [21]; ORCiD logo [22];  [23];  [4];  [24];  [22]; ORCiD logo [25]; ORCiD logo [26];  [27]; ORCiD logo [28];  [29];  [30];  [30]; ORCiD logo [31];  [32];  [33]; ORCiD logo [34]; ORCiD logo [15]; ORCiD logo [35]; ORCiD logo [36]; ORCiD logo [5]; ORCiD logo [33]; ORCiD logo [2] « less
  1. Univ. of California, Irvine, CA (United States). Dept. of Chemistry, and Dept. of Chemical Engineering and Materials Science
  2. Univ. of Twente, Enschede (Netherlands). MESA+ Inst. for Nanotechnology, Mesoscale Chemical Systems Group
  3. New York Univ. (NYU), NY (United States). Dept. of Chemical and Biomolecular Engineering
  4. Univ. of Twente, Enschede (Netherlands). Dept. of Science, Technology and Policy Studies
  5. Helmholtz-Zentrum Berlin (HZB), (Germany). German Research Centre for Materials and Energy, Inst. for Solar Fuels
  6. Amolf Inst., Center for Nanophotonics, Amsterdam, (The Netherlands)
  7. Univ. of Grenoble Alpes (France). Lab. de Chimie et Biologie des Métaux
  8. Proton OnSite, Wallingford, CT (United States)
  9. Empa, Swiss Federal Lab. for Materials Science and Technology, Dübendorf (Switzerland)
  10. Forschungszentrum Julich (Germany)
  11. Univ. of Groningen, Groningen (The Netherlands). Zernike Inst. for Advanced Materials
  12. Air Products and Chemicals, Inc., Allentown, PA (United States)
  13. Univ. of Leiden, Leiden (The Netherlands). Leiden Inst. of Chemistry
  14. Ecole Polytechnique Federale Lausanne (Switzlerland). Lab. of Applied Photonics Devices (LAPD)
  15. Delft Univ. of Technology (Netherlands). Materials for Energy Conversion and Storage (MECS), Dept. of Chemical Engineering
  16. Eindhoven Univ. of Technology, Eindhoven (The Netherlands). Dept. of Applied Physics
  17. Uppsala Univ., Uppsala (Sweden). Dept. of Engineering Sciences – Solid State Physics
  18. Univ. of Kitakyushu, Wakamatsu-ku, Kitakyushu (Japan). Inst. of Environmental Science and Technology
  19. Ecole Polytechnique Federale Lausanne (Switzlerland). Optics Lab. (LO)
  20. Ecole Polytechnique Federale Lausanne (Switzlerland). Lab. of Renewable Energy Science and Engineering (LRESE)
  21. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis and Chemical Sciences Division
  22. Univ. of Twente, Enschede (Netherlands). MESA+ Inst. for Nanotechnology, Molecular Nanofabrication Group
  23. Tokyo Univ. of Science, Tokyo (Japan). Faculty of Science, Dept. of Applied Chemistry
  24. Tokyo Univ. of Science, Tokyo (Japan). Dept. of Applied Chemistry
  25. Univ. of Twente, Enschede (Netherlands). MESA+ Inst. for Nanotechnology, Physics of Fluids Group
  26. Univ. of Twente, Enschede (Netherlands). MESA+ Inst. for Nanotechnology, Photocatalytic Synthesis Group
  27. Dept. of Energy (DOE), Washington DC (United States). Office of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Office
  28. Arizona State Univ., Tempe, AZ (United States). School of Molecular Sciences, Biodesign Center for Applied Structural Discovery (CASD)
  29. Inst. for Energiteknikk, Kjeller (Norway)
  30. Univ. of Cambridge (United Kingdom). Dept. of Chemistry
  31. California Inst. of Technology (CalTech), Pasadena, CA (United States). Division of Engineering and Applied Sciences
  32. Swiss Center for Electronics and Microtechnology (CSEM), PV Center, Neuchâtel (Switzerland)
  33. Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Physics
  34. Catalytic Innovations, Fall River, MA (United States)
  35. Univ. of Louisville, KY (United States). Conn Center for Renewable Energy Research
  36. Drexel Univ., Philadelphia, PA (United States). Chemical and Biological Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Sustainable Transportation Office. Hydrogen Fuel Cell Technologies Office (HFTO)
OSTI Identifier:
1491361
Alternate Identifier(s):
OSTI ID: 1459716
Grant/Contract Number:  
AC02-05CH11231; EE0006963; SC0004993
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 11; Journal Issue: 10; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY

Citation Formats

Ardo, Shane, Fernandez Rivas, David, Modestino, Miguel A., Schulze Greiving, Verena, Abdi, Fatwa F., Alarcon Llado, Esther, Artero, Vincent, Ayers, Katherine, Battaglia, Corsin, Becker, Jan-Philipp, Bederak, Dmytro, Berger, Alan, Buda, Francesco, Chinello, Enrico, Dam, Bernard, Di Palma, Valerio, Edvinsson, Tomas, Fujii, Katsushi, Gardeniers, Han, Geerlings, Hans, H. Hashemi, S. Mohammad, Haussener, Sophia, Houle, Frances, Huskens, Jurriaan, James, Brian D., Konrad, Kornelia, Kudo, Akihiko, Kunturu, Pramod Patil, Lohse, Detlef, Mei, Bastian, Miller, Eric L., Moore, Gary F., Muller, Jiri, Orchard, Katherine L., Rosser, Timothy E., Saadi, Fadl H., Schüttauf, Jan-Willem, Seger, Brian, Sheehan, Stafford W., Smith, Wilson A., Spurgeon, Joshua, Tang, Maureen H., van de Krol, Roel, Vesborg, Peter C. K., and Westerik, Pieter. Pathways to electrochemical solar-hydrogen technologies. United States: N. p., 2018. Web. doi:10.1039/c7ee03639f.
Ardo, Shane, Fernandez Rivas, David, Modestino, Miguel A., Schulze Greiving, Verena, Abdi, Fatwa F., Alarcon Llado, Esther, Artero, Vincent, Ayers, Katherine, Battaglia, Corsin, Becker, Jan-Philipp, Bederak, Dmytro, Berger, Alan, Buda, Francesco, Chinello, Enrico, Dam, Bernard, Di Palma, Valerio, Edvinsson, Tomas, Fujii, Katsushi, Gardeniers, Han, Geerlings, Hans, H. Hashemi, S. Mohammad, Haussener, Sophia, Houle, Frances, Huskens, Jurriaan, James, Brian D., Konrad, Kornelia, Kudo, Akihiko, Kunturu, Pramod Patil, Lohse, Detlef, Mei, Bastian, Miller, Eric L., Moore, Gary F., Muller, Jiri, Orchard, Katherine L., Rosser, Timothy E., Saadi, Fadl H., Schüttauf, Jan-Willem, Seger, Brian, Sheehan, Stafford W., Smith, Wilson A., Spurgeon, Joshua, Tang, Maureen H., van de Krol, Roel, Vesborg, Peter C. K., & Westerik, Pieter. Pathways to electrochemical solar-hydrogen technologies. United States. https://doi.org/10.1039/c7ee03639f
Ardo, Shane, Fernandez Rivas, David, Modestino, Miguel A., Schulze Greiving, Verena, Abdi, Fatwa F., Alarcon Llado, Esther, Artero, Vincent, Ayers, Katherine, Battaglia, Corsin, Becker, Jan-Philipp, Bederak, Dmytro, Berger, Alan, Buda, Francesco, Chinello, Enrico, Dam, Bernard, Di Palma, Valerio, Edvinsson, Tomas, Fujii, Katsushi, Gardeniers, Han, Geerlings, Hans, H. Hashemi, S. Mohammad, Haussener, Sophia, Houle, Frances, Huskens, Jurriaan, James, Brian D., Konrad, Kornelia, Kudo, Akihiko, Kunturu, Pramod Patil, Lohse, Detlef, Mei, Bastian, Miller, Eric L., Moore, Gary F., Muller, Jiri, Orchard, Katherine L., Rosser, Timothy E., Saadi, Fadl H., Schüttauf, Jan-Willem, Seger, Brian, Sheehan, Stafford W., Smith, Wilson A., Spurgeon, Joshua, Tang, Maureen H., van de Krol, Roel, Vesborg, Peter C. K., and Westerik, Pieter. Fri . "Pathways to electrochemical solar-hydrogen technologies". United States. https://doi.org/10.1039/c7ee03639f. https://www.osti.gov/servlets/purl/1491361.
@article{osti_1491361,
title = {Pathways to electrochemical solar-hydrogen technologies},
author = {Ardo, Shane and Fernandez Rivas, David and Modestino, Miguel A. and Schulze Greiving, Verena and Abdi, Fatwa F. and Alarcon Llado, Esther and Artero, Vincent and Ayers, Katherine and Battaglia, Corsin and Becker, Jan-Philipp and Bederak, Dmytro and Berger, Alan and Buda, Francesco and Chinello, Enrico and Dam, Bernard and Di Palma, Valerio and Edvinsson, Tomas and Fujii, Katsushi and Gardeniers, Han and Geerlings, Hans and H. Hashemi, S. Mohammad and Haussener, Sophia and Houle, Frances and Huskens, Jurriaan and James, Brian D. and Konrad, Kornelia and Kudo, Akihiko and Kunturu, Pramod Patil and Lohse, Detlef and Mei, Bastian and Miller, Eric L. and Moore, Gary F. and Muller, Jiri and Orchard, Katherine L. and Rosser, Timothy E. and Saadi, Fadl H. and Schüttauf, Jan-Willem and Seger, Brian and Sheehan, Stafford W. and Smith, Wilson A. and Spurgeon, Joshua and Tang, Maureen H. and van de Krol, Roel and Vesborg, Peter C. K. and Westerik, Pieter},
abstractNote = {Solar-powered electrochemical production of hydrogen through water electrolysis is an active and important research endeavor. However, technologies and roadmaps for implementation of this process do not exist. In this perspective paper, we describe potential pathways for solar-hydrogen technologies into the marketplace in the form of photoelectrochemical or photovoltaic-driven electrolysis devices and systems. We detail technical approaches for device and system architectures, economic drivers, societal perceptions, political impacts, technological challenges, and research opportunities. Implementation scenarios are broken down into short-term and long-term markets, and a specific technology roadmap is defined. In the short term, the only plausible economical option will be photovoltaic-driven electrolysis systems for niche applications. In the long term, electrochemical solar-hydrogen technologies could be deployed more broadly in energy markets but will require advances in the technology, significant cost reductions, and/or policy changes. Ultimately, a transition to a society that significantly relies on solar-hydrogen technologies will benefit from continued creativity and influence from the scientific community.},
doi = {10.1039/c7ee03639f},
journal = {Energy & Environmental Science},
number = 10,
volume = 11,
place = {United States},
year = {Fri Jan 19 00:00:00 EST 2018},
month = {Fri Jan 19 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 193 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A taxonomy for solar fuels generators
journal, January 2015

  • Nielander, Adam C.; Shaner, Matthew R.; Papadantonakis, Kimberly M.
  • Energy & Environmental Science, Vol. 8, Issue 1
  • DOI: 10.1039/C4EE02251C

Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy
journal, January 2012

  • Vesborg, Peter C. K.; Jaramillo, Thomas F.
  • RSC Advances, Vol. 2, Issue 21
  • DOI: 10.1039/c2ra20839c

Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%
journal, March 2016

  • Wang, Qian; Hisatomi, Takashi; Jia, Qingxin
  • Nature Materials, Vol. 15, Issue 6
  • DOI: 10.1038/nmat4589

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Terawatt-scale photovoltaics: Trajectories and challenges
journal, April 2017


Beyond Water Splitting: Efficiencies of Photo-Electrochemical Devices Producing Hydrogen and Valuable Oxidation Products
journal, January 2017

  • Mei, Bastian; Mul, Guido; Seger, Brian
  • Advanced Sustainable Systems, Vol. 1, Issue 1-2
  • DOI: 10.1002/adsu.201600035

Scalability and feasibility of photoelectrochemical H 2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst
journal, January 2015

  • Kemppainen, E.; Bodin, A.; Sebok, B.
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE02188J

The application of life cycle assessment to public policy development
journal, January 2016


Design and cost considerations for practical solar-hydrogen generators
journal, January 2014

  • Rodriguez, Claudia A.; Modestino, Miguel A.; Psaltis, Demetri
  • Energy Environ. Sci., Vol. 7, Issue 12
  • DOI: 10.1039/C4EE01453G

How far away is hydrogen? Its role in the medium and long-term decarbonisation of the European energy system
journal, January 2016


The impact of the Fukushima nuclear accident on European energy policy
journal, January 2012


Mass transport aspects of electrochemical solar-hydrogen generation
journal, January 2016

  • Modestino, Miguel A.; Hashemi, S. Mohammad H.; Haussener, Sophia
  • Energy & Environmental Science, Vol. 9, Issue 5
  • DOI: 10.1039/C5EE03698D

Modeling, Simulation, and Fabrication of a Fully Integrated, Acid-stable, Scalable Solar-Driven Water-Splitting System
journal, January 2015


Competition in a technological niche: the cars of the future
journal, May 2012

  • Bakker, Sjoerd; van Lente, Harro; Engels, Remko
  • Technology Analysis & Strategic Management, Vol. 24, Issue 5
  • DOI: 10.1080/09537325.2012.674666

High-pressure PEM water electrolysis and corresponding safety issues
journal, February 2011

  • Grigoriev, S. A.; Porembskiy, V. I.; Korobtsev, S. V.
  • International Journal of Hydrogen Energy, Vol. 36, Issue 3
  • DOI: 10.1016/j.ijhydene.2010.03.058

Energy and environment policy case for a global project on artificial photosynthesis
journal, January 2013

  • Faunce, Thomas A.; Lubitz, Wolfgang; Rutherford, A. W. (Bill)
  • Energy & Environmental Science, Vol. 6, Issue 3
  • DOI: 10.1039/c3ee00063j

Design guidelines for concentrated photo-electrochemical water splitting devices based on energy and greenhouse gas yield ratios
journal, January 2015

  • Dumortier, Mikaël; Haussener, Sophia
  • Energy & Environmental Science, Vol. 8, Issue 11
  • DOI: 10.1039/C5EE01269D

Modeling Practical Performance Limits of Photoelectrochemical Water Splitting Based on the Current State of Materials Research
journal, April 2014


Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology
journal, January 2016

  • Sathre, Roger; Greenblatt, Jeffery B.; Walczak, Karl
  • Energy & Environmental Science, Vol. 9, Issue 3
  • DOI: 10.1039/C5EE03040D

A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources
journal, July 2013

  • Chaubey, Rashmi; Sahu, Satanand; James, Olusola O.
  • Renewable and Sustainable Energy Reviews, Vol. 23
  • DOI: 10.1016/j.rser.2013.02.019

An electrochemical engineering assessment of the operational conditions and constraints for solar-driven water-splitting systems at near-neutral pH
journal, January 2015

  • Singh, Meenesh R.; Papadantonakis, Kimberly; Xiang, Chengxiang
  • Energy & Environmental Science, Vol. 8, Issue 9
  • DOI: 10.1039/C5EE01721A

Selective Electrochemical Oxidation of Lactic Acid Using Iridium-Based Catalysts
journal, March 2017

  • Chen, Chi; Bloomfield, Aaron J.; Sheehan, Stafford W.
  • Industrial & Engineering Chemistry Research, Vol. 56, Issue 13
  • DOI: 10.1021/acs.iecr.6b05073

Researching social acceptability of renewable energy technologies in Finland
journal, June 2013

  • E. Moula, Md. Munjur; Maula, Johanna; Hamdy, Mohamed
  • International Journal of Sustainable Built Environment, Vol. 2, Issue 1
  • DOI: 10.1016/j.ijsbe.2013.10.001

Anion-exchange membranes in electrochemical energy systems
journal, January 2014

  • Varcoe, John R.; Atanassov, Plamen; Dekel, Dario R.
  • Energy & Environmental Science, Vol. 7, Issue 10, p. 3135-3191
  • DOI: 10.1039/C4EE01303D

Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
journal, January 2013

  • Pinaud, Blaise A.; Benck, Jesse D.; Seitz, Linsey C.
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee40831k

Commercializing Solar Fuels within Today’s Markets
journal, July 2017


An Integrated Device View on Photo-Electrochemical Solar-Hydrogen Generation
journal, July 2015


A membrane-less electrolyzer for hydrogen production across the pH scale
journal, January 2015

  • H. Hashemi, S. Mohammad; Modestino, Miguel A.; Psaltis, Demetri
  • Energy & Environmental Science, Vol. 8, Issue 7
  • DOI: 10.1039/C5EE00083A

Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems
journal, January 2012

  • Haussener, Sophia; Xiang, Chengxiang; Spurgeon, Joshua M.
  • Energy & Environmental Science, Vol. 5, Issue 12
  • DOI: 10.1039/c2ee23187e

Low-Cost Approaches to III–V Semiconductor Growth for Photovoltaic Applications
journal, September 2017


Hydrogen production by alkaline water electrolysis
journal, January 2013


Electrolysis-Driven and Pressure-Controlled Diffusive Growth of Successive Bubbles on Microstructured Surfaces
journal, October 2017


Distributed energy resources: Planning for the future
journal, July 2017


Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%
journal, October 2016

  • Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13237

Oxygen-tolerant proton reduction catalysis: much O 2 about nothing?
journal, January 2015

  • Wakerley, David W.; Reisner, Erwin
  • Energy & Environmental Science, Vol. 8, Issue 8
  • DOI: 10.1039/C5EE01167A

Particle suspension reactors and materials for solar-driven water splitting
journal, January 2015

  • Fabian, David M.; Hu, Shu; Singh, Nirala
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE01434D

Renewable Power-to-Gas: A technological and economic review
journal, January 2016


Evaluation of flow schemes for near-neutral pH electrolytes in solar-fuel generators
journal, January 2017

  • Singh, Meenesh R.; Xiang, Chengxiang; Lewis, Nathan S.
  • Sustainable Energy & Fuels, Vol. 1, Issue 3
  • DOI: 10.1039/C7SE00062F

Energy: Supergrid
journal, December 2010


High-efficiency crystalline silicon solar cells: status and perspectives
journal, January 2016

  • Battaglia, Corsin; Cuevas, Andres; De Wolf, Stefaan
  • Energy & Environmental Science, Vol. 9, Issue 5
  • DOI: 10.1039/C5EE03380B

Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems
journal, January 2013

  • Haussener, Sophia; Hu, Shu; Xiang, Chengxiang
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee41302k

Power Electronics and Its Application to Solar Photovoltaic Systems in India
journal, January 2016

  • Kulkarni, Nishij Ganpatrao; Virulkar, Vasudeo Bapuji
  • Energy and Power Engineering, Vol. 08, Issue 02
  • DOI: 10.4236/epe.2016.82007

Noble-Metal/Cr2O3 Core/Shell Nanoparticles as a Cocatalyst for Photocatalytic Overall Water Splitting
journal, November 2006

  • Maeda, Kazuhiko; Teramura, Kentaro; Lu, Daling
  • Angewandte Chemie International Edition, Vol. 45, Issue 46
  • DOI: 10.1002/anie.200602473

Robust production of purified H 2 in a stable, self-regulating, and continuously operating solar fuel generator
journal, January 2014

  • Modestino, Miguel A.; Walczak, Karl A.; Berger, Alan
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE43214A

Net primary energy balance of a solar-driven photoelectrochemical water-splitting device
journal, January 2013

  • Zhai, Pei; Haussener, Sophia; Ager, Joel
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40880a

Evaluating particle-suspension reactor designs for Z-scheme solar water splitting via transport and kinetic modeling
journal, January 2018

  • Bala Chandran, Rohini; Breen, Sasuke; Shao, Yuanxun
  • Energy & Environmental Science, Vol. 11, Issue 1
  • DOI: 10.1039/C7EE01360D

Technoeconomics of Commodity Chemical Production Using Sunlight
journal, April 2018


Aqueous batteries as grid scale energy storage solutions
journal, February 2017

  • Posada, Jorge Omar Gil; Rennie, Anthony J. R.; Villar, Sofia Perez
  • Renewable and Sustainable Energy Reviews, Vol. 68
  • DOI: 10.1016/j.rser.2016.02.024

Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting
journal, January 2014

  • Sathre, Roger; Scown, Corinne D.; Morrow, William R.
  • Energy Environ. Sci., Vol. 7, Issue 10
  • DOI: 10.1039/C4EE01019A

Review: An Economic Perspective on Liquid Solar Fuels
journal, January 2012

  • Newman, John; Hoertz, Paul G.; Bonino, Christopher A.
  • Journal of The Electrochemical Society, Vol. 159, Issue 10
  • DOI: 10.1149/2.046210jes

Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices
journal, October 2016

  • Xiang, Chengxiang; Weber, Adam Z.; Ardo, Shane
  • Angewandte Chemie International Edition, Vol. 55, Issue 42
  • DOI: 10.1002/anie.201510463

Solar Fuels and Solar Chemicals Industry
journal, March 2017


Will Solar-Driven Water-Splitting Devices See the Light of Day?
journal, September 2013

  • McKone, James R.; Lewis, Nathan S.; Gray, Harry B.
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm4021518

Anion exchange membranes for alkaline fuel cells: A review
journal, July 2011

  • Merle, Géraldine; Wessling, Matthias; Nijmeijer, Kitty
  • Journal of Membrane Science, Vol. 377, Issue 1-2, p. 1-35
  • DOI: 10.1016/j.memsci.2011.04.043

Oxygen Tolerance of a Molecular Engineered Cathode for Hydrogen Evolution Based on a Cobalt Diimine–Dioxime Catalyst
journal, April 2015

  • Kaeffer, Nicolas; Morozan, Adina; Artero, Vincent
  • The Journal of Physical Chemistry B, Vol. 119, Issue 43
  • DOI: 10.1021/acs.jpcb.5b03136

Holistic design guidelines for solar hydrogen production by photo-electrochemical routes
journal, January 2015

  • Dumortier, Mikaël; Tembhurne, Saurabh; Haussener, Sophia
  • Energy & Environmental Science, Vol. 8, Issue 12
  • DOI: 10.1039/C5EE01821H

Intermittency and variability of daily solar irradiation
journal, June 2014


Optimization in microgrids with hybrid energy systems – A review
journal, May 2015


The transition to hydrogen‐based energy: combining technology and risk assessments and lay perspectives
journal, January 2007

  • Ricci, Miriam; Newsholme, Gordon; Bellaby, Paul
  • International Journal of Energy Sector Management, Vol. 1, Issue 1
  • DOI: 10.1108/17506220710738588

Energy storage for mitigating the variability of renewable electricity sources: An updated review
journal, December 2010

  • Beaudin, Marc; Zareipour, Hamidreza; Schellenberglabe, Anthony
  • Energy for Sustainable Development, Vol. 14, Issue 4
  • DOI: 10.1016/j.esd.2010.09.007

A comparative technoeconomic analysis of renewable hydrogen production using solar energy
journal, January 2016

  • Shaner, Matthew R.; Atwater, Harry A.; Lewis, Nathan S.
  • Energy & Environmental Science, Vol. 9, Issue 7
  • DOI: 10.1039/C5EE02573G

Explosion Limits of Hydrogen/Oxygen Mixtures at Initial Pressures up to 200 bar
journal, August 2004

  • Schröder, V.; Emonts, B.; Janßen, H.
  • Chemical Engineering & Technology, Vol. 27, Issue 8
  • DOI: 10.1002/ceat.200403174

Solar-to-Hydrogen Production at 14.2% Efficiency with Silicon Photovoltaics and Earth-Abundant Electrocatalysts
journal, January 2016

  • Schüttauf, Jan-Willem; Modestino, Miguel A.; Chinello, Enrico
  • Journal of The Electrochemical Society, Vol. 163, Issue 10
  • DOI: 10.1149/2.0541610jes

Key indicators to track current progress and future ambition of the Paris Agreement
journal, January 2017

  • Peters, Glen P.; Andrew, Robbie M.; Canadell, Josep G.
  • Nature Climate Change, Vol. 7, Issue 2
  • DOI: 10.1038/nclimate3202

An exploratory study of public opinions on the use of hydrogen energy in Wales
journal, May 2008

  • Cherryman, S. J.; King, S.; Hawkes, F. R.
  • Public Understanding of Science, Vol. 17, Issue 3
  • DOI: 10.1177/0963662506068053

Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting
journal, January 2015

  • Ager, Joel W.; Shaner, Matthew R.; Walczak, Karl A.
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE00457H

Grand Challenges for Life-Cycle Assessment of Biofuels
journal, March 2011

  • McKone, T. E.; Nazaroff, W. W.; Berck, P.
  • Environmental Science & Technology, Vol. 45, Issue 5
  • DOI: 10.1021/es103579c

Flow Batteries
journal, January 2010

  • Nguyen, Trung; Savinell, Robert F.
  • The Electrochemical Society Interface, Vol. 19, Issue 3
  • DOI: 10.1149/2.F06103if

Artificial photosynthesis as a frontier technology for energy sustainability
journal, January 2013

  • Faunce, Thomas; Styring, Stenbjorn; Wasielewski, Michael R.
  • Energy & Environmental Science, Vol. 6, Issue 4
  • DOI: 10.1039/c3ee40534f

Research Advances towards Low Cost, High Efficiency PEM Electrolysis
conference, January 2010

  • Ayers, Katherine E.; Anderson, Everett B.; Capuano, Christopher
  • 218th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.3484496

Moving beyond alternative fuel hype to decarbonize transportation
journal, February 2016


An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
journal, January 2013

  • Hu, Shu; Xiang, Chengxiang; Haussener, Sophia
  • Energy & Environmental Science, Vol. 6, Issue 10
  • DOI: 10.1039/c3ee40453f

Design Principle and Loss Engineering for Photovoltaic–Electrolysis Cell System
journal, March 2017


Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again
journal, January 2014

  • Jacobsson, T. Jesper; Fjällström, Viktor; Edoff, Marika
  • Energy Environ. Sci., Vol. 7, Issue 7
  • DOI: 10.1039/C4EE00754A

Energiepark Mainz: Technical and economic analysis of the worldwide largest Power-to-Gas plant with PEM electrolysis
journal, May 2017


Research opportunities to advance solar energy utilization
journal, January 2016


Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting
journal, June 2015

  • Mersch, Dirk; Lee, Chong-Yong; Zhang, Jenny Zhenqi
  • Journal of the American Chemical Society, Vol. 137, Issue 26
  • DOI: 10.1021/jacs.5b03737

Hydrogen or batteries for grid storage? A net energy analysis
journal, January 2015

  • Pellow, Matthew A.; Emmott, Christopher J. M.; Barnhart, Charles J.
  • Energy & Environmental Science, Vol. 8, Issue 7
  • DOI: 10.1039/C4EE04041D

Visible-light-absorbing semiconductor/molecular catalyst hybrid photoelectrodes for H 2 or O 2 evolution: recent advances and challenges
journal, January 2017

  • Wang, Mei; Yang, Yong; Shen, Junyu
  • Sustainable Energy & Fuels, Vol. 1, Issue 8
  • DOI: 10.1039/C7SE00222J

Hydrogen Production with a Simple and Scalable Membraneless Electrolyzer
journal, January 2016

  • O'Neil, Glen D.; Christian, Corey D.; Brown, David E.
  • Journal of The Electrochemical Society, Vol. 163, Issue 11
  • DOI: 10.1149/2.0021611jes

A comprehensive review on PEM water electrolysis
journal, April 2013

  • Carmo, Marcelo; Fritz, David L.; Mergel, Jürgen
  • International Journal of Hydrogen Energy, Vol. 38, Issue 12, p. 4901-4934
  • DOI: 10.1016/j.ijhydene.2013.01.151

The dual frontier: Patented inventions and prior scientific advance
journal, August 2017


Renewable Power-to-Gas: A technological and economic review
text, January 2016


Hydrogen Production with a Simple and Scalable Membraneless Electrolyzer
text, January 2016

  • O'Neil, Glen D.; Christian, Corey D.; Brown, David Emory
  • Columbia University
  • DOI: 10.7916/d8x63ngr

Noble-Metal/Cr2O3 Core/Shell Nanoparticles as a Cocatalyst for Photocatalytic Overall Water Splitting.
journal, February 2007


Works referencing / citing this record:

Benchmarking the Activity, Stability, and Inherent Electrochemistry of Amorphous Molybdenum Sulfide for Hydrogen Production
journal, January 2019

  • Escalera-López, Daniel; Lou, Zhiheng; Rees, Neil V.
  • Advanced Energy Materials, Vol. 9, Issue 8
  • DOI: 10.1002/aenm.201802614

Recent Advances and Emerging Trends in Photo-Electrochemical Solar Energy Conversion
journal, November 2018


Stepping towards Solar Water Splitting: Recent Progress in Bismuth Vanadate Photoanodes
journal, May 2019


Polymers of Intrinsic Microporosity in Triphasic Electrochemistry: Perspectives
journal, July 2019


Metal Nanoclusters: New Paradigm in Catalysis for Water Splitting, Solar and Chemical Energy Conversion
journal, March 2019

  • Munir, Akhtar; Joya, Khurram Saleem; Ul haq, Tanveer
  • ChemSusChem, Vol. 12, Issue 8
  • DOI: 10.1002/cssc.201802069

Ultrasmall Co@Co(OH) 2 Nanoclusters Embedded in N‐Enriched Mesoporous Carbon Networks as Efficient Electrocatalysts for Water Oxidation
journal, November 2019


Iron(ii) coordination complexes with panchromatic absorption and nanosecond charge-transfer excited state lifetimes
journal, November 2019


Three-dimensionally patterned Ag–Pt alloy catalyst on planar Si photocathodes for photoelectrochemical H 2 evolution
journal, January 2019

  • Lim, Sung Yul; Ha, Kyungyeon; Ha, Heonhak
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 8
  • DOI: 10.1039/c8cp07304j

Electrochemical water oxidation by cobalt-Prussian blue coordination polymer and theoretical studies of the electronic structure of the active species
journal, January 2019

  • Pires, Bruno M.; dos Santos, Pãmyla L.; Katic, Vera
  • Dalton Transactions, Vol. 48, Issue 15
  • DOI: 10.1039/c8dt04660c

Ag-Functionalized CuWO 4 /WO 3 nanocomposites for solar water splitting
journal, January 2019

  • Salimi, R.; Sabbagh Alvani, A. A.; Mei, B. T.
  • New Journal of Chemistry, Vol. 43, Issue 5
  • DOI: 10.1039/c8nj05625k

Heteroleptic ruthenium bis-terpyridine complexes bearing a 4-(dimethylamino)phenyl donor and free coordination sites for hydrogen photo-evolution
journal, January 2019

  • Auvray, Thomas; Sahoo, Rakesh; Deschênes, Denis
  • Dalton Transactions, Vol. 48, Issue 40
  • DOI: 10.1039/c9dt02613d

Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape
journal, January 2020

  • Smith, Collin; Hill, Alfred K.; Torrente-Murciano, Laura
  • Energy & Environmental Science, Vol. 13, Issue 2
  • DOI: 10.1039/c9ee02873k

A methodological review on material growth and synthesis of solar-driven water splitting photoelectrochemical cells
journal, January 2019

  • Park, Kwangwook; Kim, Yeong Jae; Yoon, Taeho
  • RSC Advances, Vol. 9, Issue 52
  • DOI: 10.1039/c9ra05341g

Rapid advances in antimony triselenide photocathodes for solar hydrogen generation
journal, January 2019

  • Yang, Wooseok; Moon, Jooho
  • Journal of Materials Chemistry A, Vol. 7, Issue 36
  • DOI: 10.1039/c9ta07990d

Single nanoparticle photoelectrochemistry: What is next?
journal, November 2019

  • Wang, Li; Schmid, Merranda; Sambur, Justin B.
  • The Journal of Chemical Physics, Vol. 151, Issue 18
  • DOI: 10.1063/1.5124710

Solar vanadium redox-flow battery powered by thin-film silicon photovoltaics for efficient photoelectrochemical energy storage
journal, November 2018

  • Urbain, Félix; Murcia-López, Sebastián; Nembhard, Nicole
  • Journal of Physics D: Applied Physics, Vol. 52, Issue 4
  • DOI: 10.1088/1361-6463/aaeab9

Correlating the Short-Time Current Response of a Hydrogen Evolving Nickel Electrode to Bubble Growth
journal, January 2019

  • Pande, Nakul; Mul, Guido; Lohse, Detlef
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.0191910jes

Decoupling Gas Evolution from Water-Splitting Electrodes
journal, January 2019

  • Peñas, Pablo; van der Linde, Peter; Vijselaar, Wouter
  • Journal of The Electrochemical Society, Vol. 166, Issue 15
  • DOI: 10.1149/2.1381914jes

Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape
text, January 2020

  • Smith, Collin; Hill, Alfred K.; Torrente-Murciano, Laura
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.49538

A versatile and membrane-less electrochemical reactor for the electrolysis of water and brine
text, January 2019


Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting
text, January 2019

  • Wooseok, Yang,; Ramanujam, Prabhakar, Rajiv; Jeiwan, Tan,
  • Royal Society of Chemistry
  • DOI: 10.5167/uzh-183873

Considerations for the scaling-up of water splitting catalysts
journal, May 2019


Black phosphorus quantum dots facilitate carrier separation for enhancing hydrogen production over hierarchical Cu 7 S 4 /ZnIn 2 S 4 composites
journal, January 2020

  • Zhang, Quan; Zhang, Juhua; Zhang, Lu
  • Catalysis Science & Technology, Vol. 10, Issue 4
  • DOI: 10.1039/c9cy02278c

Gas bubble evolution on microstructured silicon substrates
text, January 2019