DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strongly Modified Scaling of CO Hydrogenation in Metal Supported TiO Nanostripes

Journal Article · · ACS Catalysis

The boundary between a metal-oxide and its metal support (metal-oxide|support) provides an intriguing structural interface for heterogeneous catalysis. The hydrogenation of CO is a reaction step believed to be rate limiting in electrochemical CO2 reduction. Density functional theory (DFT) calculations were performed to study this reaction step for a class of catalytic material: metal supported TiO nanostripes. The most stable adsorption sites were identified for all metal supports which showed a striking difference in adsorbate geometry between the strong and weak binding metal supports. The modified CO hydrogenation scaling shows a significant strengthening over (111) and (211) transition metal surfaces. Such enhancement can be attributed to a combination of geometrical effects and metal-oxide|support electronic interactions. A correlation analysis was performed to identify the key features needed to accurately predict *CO and *CHO adsorption energies on the TiO nanostripes and to further validate our physical analysis of the results. Furthermore, this structural motif seems to be a promising avenue to explore scaling modification in other metal-oxide materials and reactions.

Research Organization:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Organization:
USDOE
Grant/Contract Number:
AC02-76SF00515
OSTI ID:
1490983
Alternate ID(s):
OSTI ID: 1490748
Journal Information:
ACS Catalysis, Vol. 8, Issue 11; ISSN 2155-5435
Publisher:
American Chemical Society (ACS)Copyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Figures / Tables (11)