DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Continuous electrochemical heat engines

Abstract

Given the large magnitude of energy in waste heat, its efficient conversion to electrical power offers a significant opportunity to lower greenhouse gas emissions. Furthermore, it has been difficult to optimize the performance of new direct energy conversion approaches because of the coupling between entropy change and thermal and electrical transport in continuously operating devices. With electrochemical cells driving flowing electrolytes in symmetric redox reactions at different temperatures, we demonstrate two continuous electrochemical heat engines that operate at 10–50 °C and at 500–900 °C, respectively. Simulations of kilowatt-scale systems using electrochemical cells stacked in series suggest efficiencies over 30% of the Carnot limit and areal power densities competitive with solid-state thermoelectrics at maximum power. Although entropy change, thermal transport and electrical transport are inherently coupled in solid-state thermoelectrics, they can be somewhat circumvented in electrochemical systems, thus offering new opportunities to engineer efficient energy conversion systems.

Authors:
 [1];  [2]; ORCiD logo [3]; ORCiD logo [4]
  1. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. Stanford Univ., Stanford, CA (United States)
  3. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Precourt Institute for Energy, Stanford, CA (United States)
  4. Stanford Precourt Institute for Energy, Stanford, CA (United States); Stanford Univ., Stanford, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1490884
Alternate Identifier(s):
OSTI ID: 1461903
Grant/Contract Number:  
AC02-76SF00515; DGE-1147470
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 11; Journal Issue: 10; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
30 DIRECT ENERGY CONVERSION

Citation Formats

Poletayev, Andrey D., McKay, Ian S., Chueh, William C., and Majumdar, Arun. Continuous electrochemical heat engines. United States: N. p., 2018. Web. doi:10.1039/c8ee01137k.
Poletayev, Andrey D., McKay, Ian S., Chueh, William C., & Majumdar, Arun. Continuous electrochemical heat engines. United States. https://doi.org/10.1039/c8ee01137k
Poletayev, Andrey D., McKay, Ian S., Chueh, William C., and Majumdar, Arun. Mon . "Continuous electrochemical heat engines". United States. https://doi.org/10.1039/c8ee01137k. https://www.osti.gov/servlets/purl/1490884.
@article{osti_1490884,
title = {Continuous electrochemical heat engines},
author = {Poletayev, Andrey D. and McKay, Ian S. and Chueh, William C. and Majumdar, Arun},
abstractNote = {Given the large magnitude of energy in waste heat, its efficient conversion to electrical power offers a significant opportunity to lower greenhouse gas emissions. Furthermore, it has been difficult to optimize the performance of new direct energy conversion approaches because of the coupling between entropy change and thermal and electrical transport in continuously operating devices. With electrochemical cells driving flowing electrolytes in symmetric redox reactions at different temperatures, we demonstrate two continuous electrochemical heat engines that operate at 10–50 °C and at 500–900 °C, respectively. Simulations of kilowatt-scale systems using electrochemical cells stacked in series suggest efficiencies over 30% of the Carnot limit and areal power densities competitive with solid-state thermoelectrics at maximum power. Although entropy change, thermal transport and electrical transport are inherently coupled in solid-state thermoelectrics, they can be somewhat circumvented in electrochemical systems, thus offering new opportunities to engineer efficient energy conversion systems.},
doi = {10.1039/c8ee01137k},
journal = {Energy & Environmental Science},
number = 10,
volume = 11,
place = {United States},
year = {2018},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 42 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thermal pulse energy harvesting
journal, August 2013


High-Temperature Materials
journal, January 1960

  • Hehemann, R. F.; Mervin Ault, G.; Weir, J. R.
  • Journal of The Electrochemical Society, Vol. 107, Issue 1
  • DOI: 10.1149/1.2427599

Solution Characterization of the Iron(II) Bis(1,4,7-Triazacyclononane) Spin-Equilibrium Reaction
journal, September 2001

  • Turner, Jeffrey W.; Schultz, Franklin A.
  • Inorganic Chemistry, Vol. 40, Issue 20
  • DOI: 10.1021/ic0013678

Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features
journal, July 2010

  • Vineis, Christopher J.; Shakouri, Ali; Majumdar, Arun
  • Advanced Materials, Vol. 22, Issue 36, p. 3970-3980
  • DOI: 10.1002/adma.201000839

Ionic thermoelectric supercapacitors
journal, January 2016

  • Zhao, D.; Wang, H.; Khan, Z. U.
  • Energy & Environmental Science, Vol. 9, Issue 4
  • DOI: 10.1039/C6EE00121A

Thermogalvanic conversion of heat to electricity
journal, January 1986


Membrane-Free Battery for Harvesting Low-Grade Thermal Energy
journal, October 2014

  • Yang, Yuan; Loomis, James; Ghasemi, Hadi
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl5032106

Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

Energy harvesting, reuse and upgrade to reduce primary energy usage in the USA
journal, October 2011


An electrochemical system for efficiently harvesting low-grade heat energy
journal, May 2014

  • Lee, Seok Woo; Yang, Yuan; Lee, Hyun-Wook
  • Nature Communications, Vol. 5, Article No. 3942
  • DOI: 10.1038/ncomms4942

Li-Ion Cell Operation at Low Temperatures
journal, January 2013

  • Ji, Yan; Zhang, Yancheng; Wang, Chao-Yang
  • Journal of The Electrochemical Society, Vol. 160, Issue 4
  • DOI: 10.1149/2.047304jes

New Directions for Low-Dimensional Thermoelectric Materials
journal, April 2007

  • Dresselhaus, M. S.; Chen, G.; Tang, M. Y.
  • Advanced Materials, Vol. 19, Issue 8, p. 1043-1053
  • DOI: 10.1002/adma.200600527

Modeling of flowable slurry electrodes with combined faradaic and nonfaradaic currents
journal, April 2016

  • Hoyt, Nathaniel C.; Savinell, Robert F.; Wainright, Jesse S.
  • Chemical Engineering Science, Vol. 144
  • DOI: 10.1016/j.ces.2016.01.048

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008


A Review of Power Generation in Aqueous Thermogalvanic Cells
journal, January 1995

  • Quickenden, T. I.; Mua, Y.
  • Journal of The Electrochemical Society, Vol. 142, Issue 11, p. 3985-3994
  • DOI: 10.1149/1.2048446

A thermoelectric device based on beta-alumina solid electrolyte
journal, August 1974


Theoretical assessment of an oxygen heat engine: The effect of mass transport limitation
journal, January 1991


Semi-Solid Lithium Rechargeable Flow Battery
journal, May 2011

  • Duduta, Mihai; Ho, Bryan; Wood, Vanessa C.
  • Advanced Energy Materials, Vol. 1, Issue 4, p. 511-516
  • DOI: 10.1002/aenm.201100152

Thermochemical Data of Pure Substances
book, October 1995


Relationship between thermoelectric figure of merit and energy conversion efficiency
journal, June 2015

  • Kim, Hee Seok; Liu, Weishu; Chen, Gang
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 27
  • DOI: 10.1073/pnas.1510231112

Effects of operating temperature on the performance of vanadium redox flow batteries
journal, October 2015


Searching for a Better Thermal Battery
journal, March 2012


Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based Thermo-Electrochemical Cell
journal, March 2010

  • Hu, Renchong; Cola, Baratunde A.; Haram, Nanda
  • Nano Letters, Vol. 10, Issue 3
  • DOI: 10.1021/nl903267n

The Electrochemical Flow Capacitor: A New Concept for Rapid Energy Storage and Recovery
journal, May 2012

  • Presser, Volker; Dennison, Christopher R.; Campos, Jonathan
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201100768

Thermoelectric Energy Conversion with Solid Electrolytes
journal, September 1983


Membrane-less hydrogen bromine flow battery
journal, August 2013

  • Braff, William A.; Bazant, Martin Z.; Buie, Cullen R.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3346

Towards ionic liquid-based thermoelectrochemical cells for the harvesting of thermal energy
journal, December 2013


Solvent, ligand, and ionic charge effects on reaction entropies for simple transition-metal redox couples
journal, October 1984

  • Hupp, Joseph T.; Weaver, Michael J.
  • Inorganic Chemistry, Vol. 23, Issue 22
  • DOI: 10.1021/ic00190a042

Porous-electrode theory with battery applications
journal, January 1975


An electrochemical heat engine for direct solar energy conversion
journal, January 1979


Boundary Layer Analysis of Membraneless Electrochemical Cells
journal, January 2013

  • Braff, William A.; Buie, Cullen R.; Bazant, Martin Z.
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.052311jes

Thermodynamics of Thermoelectric Phenomena and Applications
journal, August 2011

  • Goupil, Christophe; Seifert, Wolfgang; Zabrocki, Knud
  • Entropy, Vol. 13, Issue 8
  • DOI: 10.3390/e13081481

MATERIALS SCIENCE: Enhanced: Thermoelectricity in Semiconductor Nanostructures
journal, February 2004


A metal-free organic–inorganic aqueous flow battery
journal, January 2014

  • Huskinson, Brian; Marshak, Michael P.; Suh, Changwon
  • Nature, Vol. 505, Issue 7482, p. 195-198
  • DOI: 10.1038/nature12909

New Directions for Low-Dimensional Thermoelectric Materials
journal, June 2007

  • Dresselhaus, Mildred S.; Chen, Gang; Tang, Ming Y.
  • ChemInform, Vol. 38, Issue 26
  • DOI: 10.1002/chin.200726202

Thermochemical data of pure substances
journal, March 1997


Works referencing / citing this record:

Direct thermal charging cell for converting low-grade heat to electricity
journal, September 2019


Electrochemical Redox Refrigeration
journal, September 2019