DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Resolving Hysteresis in Perovskite Solar Cells with Rapid Flame-Processed Cobalt-Doped TiO2

Abstract

To further increase the open–circuit voltage (V oc) of perovskite solar cells (PSCs), many efforts have been devoted to doping the TiO2 electron transport/selective layers by using metal dopants with higher electronegativity than Ti. However, those dopants can introduce undesired charge traps that hinder charge transport through TiO2, so the improvement in the V oc is often accompanied by an undesired photocurrent density–voltage (J–V) hysteresis problem. Herein, it is demonstrated that the use of a rapid flame doping process (40 s) to introduce cobalt dopant into TiO2 not only solves the J–V hysteresis problem but also increases the V oc and power conversion efficiency of both mesoscopic and planar PSCs. The reasons for the simultaneous improvements are two fold. First, the flame–doped Co–TiO2 film forms Co–Ov (cobalt dopant–oxygen vacancy) pairs and hence reduces the number density of Ti3+ trap states. Second, Co doping upshifts the band structure of TiO2, facilitating efficient charge extraction. As a result, for planar PSCs, the flame doping of Co increases the efficiency from 17.1% to 18.0% while reducing the hysteresis from 16.0% to 1.7%. Here, for mesoscopic PSCs, the flame doping of Co increases the efficiency from 18.5% to 20.0% while reducing the hysteresis frommore » 7.0% to 0.1%.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [3];  [2];  [3];  [3]; ORCiD logo [2]; ORCiD logo [4]
  1. Sungkyunkwan Univ. (SKKU), Suwon (Republic of Korea); Stanford Univ., Stanford, CA (United States)
  2. Yonsei Univ., Seoul (Republic of Korea)
  3. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Stanford Univ., Stanford, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1490881
Grant/Contract Number:  
AC02-76SF00515; 2015-22-0067; 2016R1A2A1A05005216; 2018R1D1A1B07050875; 20163010012450; 20173010013340
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 8; Journal Issue: 29; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; cobalt‐doped TiO2; electron transport layer; hysteresis; perovskite solar cells; sol‐flame doping

Citation Formats

Kim, Jung Kyu, Chai, Sung Uk, Ji, Yongfei, Levy-Wendt, Ben, Kim, Suk Hyun, Yi, Yeonjin, Heinz, Tony F., Nørskov, Jens K., Park, Jong Hyeok, and Zheng, Xiaolin. Resolving Hysteresis in Perovskite Solar Cells with Rapid Flame-Processed Cobalt-Doped TiO2. United States: N. p., 2018. Web. doi:10.1002/aenm.201801717.
Kim, Jung Kyu, Chai, Sung Uk, Ji, Yongfei, Levy-Wendt, Ben, Kim, Suk Hyun, Yi, Yeonjin, Heinz, Tony F., Nørskov, Jens K., Park, Jong Hyeok, & Zheng, Xiaolin. Resolving Hysteresis in Perovskite Solar Cells with Rapid Flame-Processed Cobalt-Doped TiO2. United States. https://doi.org/10.1002/aenm.201801717
Kim, Jung Kyu, Chai, Sung Uk, Ji, Yongfei, Levy-Wendt, Ben, Kim, Suk Hyun, Yi, Yeonjin, Heinz, Tony F., Nørskov, Jens K., Park, Jong Hyeok, and Zheng, Xiaolin. Wed . "Resolving Hysteresis in Perovskite Solar Cells with Rapid Flame-Processed Cobalt-Doped TiO2". United States. https://doi.org/10.1002/aenm.201801717. https://www.osti.gov/servlets/purl/1490881.
@article{osti_1490881,
title = {Resolving Hysteresis in Perovskite Solar Cells with Rapid Flame-Processed Cobalt-Doped TiO2},
author = {Kim, Jung Kyu and Chai, Sung Uk and Ji, Yongfei and Levy-Wendt, Ben and Kim, Suk Hyun and Yi, Yeonjin and Heinz, Tony F. and Nørskov, Jens K. and Park, Jong Hyeok and Zheng, Xiaolin},
abstractNote = {To further increase the open–circuit voltage (V oc) of perovskite solar cells (PSCs), many efforts have been devoted to doping the TiO2 electron transport/selective layers by using metal dopants with higher electronegativity than Ti. However, those dopants can introduce undesired charge traps that hinder charge transport through TiO2, so the improvement in the V oc is often accompanied by an undesired photocurrent density–voltage (J–V) hysteresis problem. Herein, it is demonstrated that the use of a rapid flame doping process (40 s) to introduce cobalt dopant into TiO2 not only solves the J–V hysteresis problem but also increases the V oc and power conversion efficiency of both mesoscopic and planar PSCs. The reasons for the simultaneous improvements are two fold. First, the flame–doped Co–TiO2 film forms Co–Ov (cobalt dopant–oxygen vacancy) pairs and hence reduces the number density of Ti3+ trap states. Second, Co doping upshifts the band structure of TiO2, facilitating efficient charge extraction. As a result, for planar PSCs, the flame doping of Co increases the efficiency from 17.1% to 18.0% while reducing the hysteresis from 16.0% to 1.7%. Here, for mesoscopic PSCs, the flame doping of Co increases the efficiency from 18.5% to 20.0% while reducing the hysteresis from 7.0% to 0.1%.},
doi = {10.1002/aenm.201801717},
journal = {Advanced Energy Materials},
number = 29,
volume = 8,
place = {United States},
year = {Wed Aug 29 00:00:00 EDT 2018},
month = {Wed Aug 29 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 38 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Characterization of the TiO2 ETL. a) Schematic illustration of the PSC fabrication with the Co‐doped TiO2 by rapid sol‐flame doping. b) Co 2p XPS spectrum of Co‐TiO2. c) Ti 2p XPS spectra, d) XPS VB spectra, and e) MS plots of bare TiO2 and Co‐TiO2.

Save / Share:

Works referenced in this record:

Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO 2 layer
journal, January 2017


Rapid and Controllable Flame Reduction of TiO 2 Nanowires for Enhanced Solar Water-Splitting
journal, December 2013

  • Cho, In Sun; Logar, Manca; Lee, Chi Hwan
  • Nano Letters, Vol. 14, Issue 1
  • DOI: 10.1021/nl4026902

Origin of JV Hysteresis in Perovskite Solar Cells
journal, February 2016


Efficient Indium-Doped TiO x Electron Transport Layers for High-Performance Perovskite Solar Cells and Perovskite-Silicon Tandems
journal, November 2016

  • Peng, Jun; Duong, The; Zhou, Xianzhong
  • Advanced Energy Materials, Vol. 7, Issue 4
  • DOI: 10.1002/aenm.201601768

Performance enhancement of perovskite solar cells with Mg-doped TiO 2 compact film as the hole-blocking layer
journal, March 2015

  • Wang, Jing; Qin, Minchao; Tao, Hong
  • Applied Physics Letters, Vol. 106, Issue 12
  • DOI: 10.1063/1.4916345

Performance enhancement of perovskite solar cells by doping TiO2 blocking layer with group VB elements
journal, February 2017


Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance
journal, April 2013

  • Cho, In Sun; Lee, Chi Hwan; Feng, Yunzhe
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2729

Novel Carbon-Doped TiO 2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting
journal, January 2006

  • Park, Jong Hyeok; Kim, Sungwook; Bard, Allen J.
  • Nano Letters, Vol. 6, Issue 1
  • DOI: 10.1021/nl051807y

Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes
journal, June 2015

  • Kyu Kim, Jung; Bae, Sukang; Yi, Yeonjin
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep11032

Mg-doped TiO 2 boosts the efficiency of planar perovskite solar cells to exceed 19%
journal, January 2016

  • Zhang, Huiyin; Shi, Jiangjian; Xu, Xin
  • Journal of Materials Chemistry A, Vol. 4, Issue 40
  • DOI: 10.1039/C6TA06879K

Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode
journal, July 2015


Doping high-surface-area mesoporous TiO 2 microspheres with carbonate for visible light hydrogen production
journal, January 2014

  • Liu, Bin; Liu, Li-Min; Lang, Xiu-Feng
  • Energy & Environmental Science, Vol. 7, Issue 8
  • DOI: 10.1039/C4EE00472H

Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells
journal, January 2016

  • Giordano, Fabrizio; Abate, Antonio; Correa Baena, Juan Pablo
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10379

Balancing Light Absorptivity and Carrier Conductivity of Graphene Quantum Dots for High-Efficiency Bulk Heterojunction Solar Cells
journal, July 2013

  • Kim, Jung Kyu; Park, Myung Jin; Kim, Sang Jin
  • ACS Nano, Vol. 7, Issue 8
  • DOI: 10.1021/nn402606v

Improving the Optoelectronic Properties of Mesoporous TiO 2 by Cobalt Doping for High-Performance Hysteresis-free Perovskite Solar Cells
journal, January 2018

  • Sidhik, Siraj; Cerdan Pasarán, Andrea; Esparza, Diego
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 4
  • DOI: 10.1021/acsami.7b16312

Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell
journal, July 2013

  • Park, Nam-Gyu
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 15, p. 2423-2429
  • DOI: 10.1021/jz400892a

Advances in Liquid-Electrolyte and Solid-State Dye-Sensitized Solar Cells
journal, September 2007


Interface engineering of highly efficient perovskite solar cells
journal, July 2014


The rapid evolution of highly efficient perovskite solar cells
journal, January 2017

  • Correa-Baena, Juan-Pablo; Abate, Antonio; Saliba, Michael
  • Energy & Environmental Science, Vol. 10, Issue 3
  • DOI: 10.1039/C6EE03397K

Enhanced Efficiency and Stability of Perovskite Solar Cells Through Nd-Doping of Mesostructured TiO 2
journal, December 2015

  • Roose, Bart; Gödel, Karl C.; Pathak, Sandeep
  • Advanced Energy Materials, Vol. 6, Issue 2
  • DOI: 10.1002/aenm.201501868

Enhancing Efficiency and Stability of Perovskite Solar Cells through Nb-Doping of TiO 2 at Low Temperature
journal, March 2017

  • Yin, Guannan; Ma, Jiaxin; Jiang, Hong
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 12
  • DOI: 10.1021/acsami.7b01063

Performance enhancement of perovskite solar cells with a modified TiO 2 electron transport layer using Zn-based additives
journal, January 2016

  • Lv, Minghang; Lv, Wei; Fang, Xiang
  • RSC Advances, Vol. 6, Issue 41
  • DOI: 10.1039/C6RA01149G

A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells
journal, June 2016


Performance and Stability Enhancement of Dye-Sensitized and Perovskite Solar Cells by Al Doping of TiO 2
journal, July 2014

  • Pathak, Sandeep K.; Abate, A.; Ruckdeschel, P.
  • Advanced Functional Materials, Vol. 24, Issue 38
  • DOI: 10.1002/adfm.201401658

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites
journal, October 2012


Tuning the Fermi-level of TiO 2 mesoporous layer by lanthanum doping towards efficient perovskite solar cells
journal, January 2016

  • Gao, Xiao-Xin; Ge, Qian-Qing; Xue, Ding-Jiang
  • Nanoscale, Vol. 8, Issue 38
  • DOI: 10.1039/C6NR05917A

Surface Magnetism of Cobalt-Doped Anatase TiO 2 Nanopowders
journal, December 2016

  • Yermakov, A. Ye.; Zakharova, G. S.; Uimin, M. A.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 50
  • DOI: 10.1021/acs.jpcc.6b10417

Enhanced planar perovskite solar cells with efficiency exceeding 16% via reducing the oxygen vacancy defect state in titanium oxide electrode
journal, January 2017

  • Du, Yangyang; Cai, Hongkun; Wu, Yunhao
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 21
  • DOI: 10.1039/C7CP01936J

Lead-free solid-state organic–inorganic halide perovskite solar cells
journal, May 2014

  • Hao, Feng; Stoumpos, Constantinos C.; Cao, Duyen Hanh
  • Nature Photonics, Vol. 8, Issue 6
  • DOI: 10.1038/nphoton.2014.82

Effect of TiO 2 crystal structure on the catalytic performance of Co 3 O 4 /TiO 2 catalyst for low-temperature CO oxidation
journal, January 2014

  • Li, Jie; Lu, Guanzhong; Wu, Guisheng
  • Catal. Sci. Technol., Vol. 4, Issue 5
  • DOI: 10.1039/C3CY01004J

Calculation of TiO 2 Surface and Subsurface Oxygen Vacancy by the Screened Exchange Functional
journal, July 2015

  • Li, Hongfei; Guo, Yuzheng; Robertson, John
  • The Journal of Physical Chemistry C, Vol. 119, Issue 32
  • DOI: 10.1021/acs.jpcc.5b02430

Sol-flame synthesis of cobalt-doped TiO 2 nanowires with enhanced electrocatalytic activity for oxygen evolution reaction
journal, January 2014

  • Cai, Lili; Cho, In Sun; Logar, Manca
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 24
  • DOI: 10.1039/C4CP01748J

Enhanced short-circuit current density of perovskite solar cells using Zn-doped TiO2 as electron transport layer
journal, December 2016


Niobium Doping Effects on TiO 2 Mesoscopic Electron Transport Layer-Based Perovskite Solar Cells
journal, April 2015


Performance enhancement of perovskite-sensitized mesoscopic solar cells using Nb-doped TiO2 compact layer
journal, April 2015


Sol-Flame Synthesis: A General Strategy To Decorate Nanowires with Metal Oxide/Noble Metal Nanoparticles
journal, April 2012

  • Feng, Yunzhe; Cho, In Sun; Rao, Pratap M.
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl300060b

Highly Efficient Solar Water Splitting from Transferred TiO 2 Nanotube Arrays
journal, August 2015


Sol-flame synthesis of hybrid metal oxide nanowires
journal, January 2013


Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%
journal, August 2012

  • Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00591

Ultrafast Flame Annealing of TiO 2 Paste for Fabricating Dye-Sensitized and Perovskite Solar Cells with Enhanced Efficiency
journal, September 2017


Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni
journal, January 2011

  • Biesinger, Mark C.; Payne, Brad P.; Grosvenor, Andrew P.
  • Applied Surface Science, Vol. 257, Issue 7, p. 2717-2730
  • DOI: 10.1016/j.apsusc.2010.10.051

Works referencing / citing this record:

Metal Oxide Charge Transport Layers for Efficient and Stable Perovskite Solar Cells
journal, June 2019

  • Shin, Seong Sik; Lee, Seon Joo; Seok, Sang Il
  • Advanced Functional Materials, Vol. 29, Issue 47
  • DOI: 10.1002/adfm.201900455

TiO 2 /WO 3 Bilayer as Electron Transport Layer for Efficient Planar Perovskite Solar Cell with Efficiency Exceeding 20%
journal, November 2019

  • You, Yibo; Tian, Wei; Min, Liangliang
  • Advanced Materials Interfaces, Vol. 7, Issue 1
  • DOI: 10.1002/admi.201901406

Coagulated SnO 2 Colloids for High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability
journal, July 2019

  • Liu, Zhongze; Deng, Kaimo; Hu, Jun
  • Angewandte Chemie International Edition, Vol. 58, Issue 33
  • DOI: 10.1002/anie.201904945

Fly-through synthesis of nanoparticles on textile and paper substrates
journal, January 2019

  • Jiao, Miaolun; Yao, Yonggang; Pastel, Glenn
  • Nanoscale, Vol. 11, Issue 13
  • DOI: 10.1039/c8nr10137j

Kinetic and material properties of interfaces governing slow response and long timescale phenomena in perovskite solar cells
journal, January 2019

  • Wang, Hongxia; Guerrero, Antonio; Bou, Agustín
  • Energy & Environmental Science, Vol. 12, Issue 7
  • DOI: 10.1039/c9ee00802k

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.