skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on June 10, 2020

Title: Cluster Cosmology Constraints from the 2500 deg 2 SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope

Abstract

We derive cosmological constraints using a galaxy cluster sample selected from the 2500 deg 2 SPT-SZ survey. The sample spans the redshift range 0.25 < z < 1.75 and contains 343 clusters with SZ detection significance ξ > 5. The sample is supplemented with optical weak gravitational lensing measurements of 32 clusters with 0.29 < z < 1.13 (from Magellan and Hubble Space Telescope) and X-ray measurements of 89 clusters with 0.25 < z < 1.75 (from Chandra). We rely on minimal modeling assumptions: (i) weak lensing provides an accurate means of measuring halo masses, (ii) the mean SZ and X-ray observables are related to the true halo mass through power-law relations in mass and dimensionless Hubble parameter E(z) with a priori unknown parameters, and (iii) there is (correlated, lognormal) intrinsic scatter and measurement noise relating these observables to their mean relations. We simultaneously fit for these astrophysical modeling parameters and for cosmology. Assuming a flat νΛCDM model, in which the sum of neutrino masses is a free parameter, we measure Ω m = 0.276 ± 0.047, σ 8 = 0.781 ± 0.037, and σ 8m/0.3) 0.2 = 0.766 ±0.025. The redshift evolutions of the X-ray Y X–mass and M gas–mass relations are both consistent with self-similar evolution to within 1σ. The mass slope of the Y X–mass relation shows a 2.3σ deviation frommore » self-similarity. Similarly, the mass slope of the M gas–mass relation is steeper than self-similarity at the 2.5σ level. In a νwCDM cosmology, we measure the dark energy equation-of-state parameter w = -1.55 ± 0.41 from the cluster data. Here, we perform a measurement of the growth of structure since redshift z ~ 1.7 and find no evidence for tension with the prediction from general relativity. This is the first analysis of the SPT cluster sample that uses direct weak-lensing mass calibration and is a step toward using the much larger weak-lensing data set from DES. We provide updated redshift and mass estimates for the SPT sample.« less

Authors:
ORCiD logo; ORCiD logo; ; ; ; ; ORCiD logo; ORCiD logo; ; ORCiD logo; ; ORCiD logo; ; ; ; ; ; ; ; more »; ORCiD logo; ; ORCiD logo; ; ; ; ORCiD logo; ORCiD logo; ORCiD logo; ; ORCiD logo; ; ; ; ORCiD logo; ORCiD logo; ; ; ; ; ; ; ORCiD logo; ; ORCiD logo; ; ORCiD logo; ; ; ORCiD logo; ; ; ; ; ; ; ; ; ; ORCiD logo; ORCiD logo; ; ; ORCiD logo; ; ; ; ; ; ; ; ORCiD logo; ; ; ORCiD logo; ; ; ORCiD logo; ; « less
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
SPT
OSTI Identifier:
1490847
Report Number(s):
arXiv:1812.01679; FERMILAB-PUB-18-692-AE
Journal ID: ISSN 1538-4357; 1707055
Grant/Contract Number:  
AC02-07CH11359
Resource Type:
Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 878; Journal Issue: 1; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; cosmological parameters; cosmology: observations; galaxies: clusters: general; large-scale structure of universe

Citation Formats

Bocquet, S., Dietrich, J. P., Schrabback, T., Bleem, L. E., Klein, M., Allen, S. W., Applegate, D. E., Ashby, M. L. N., Bautz, M., Bayliss, M., Benson, B. A., Brodwin, M., Bulbul, E., Canning, R. E. A., Capasso, R., Carlstrom, J. E., Chang, C. L., Chiu, I., Cho, H-M., Clocchiatti, A., Crawford, T. M., Crites, A. T., Haan, T. de, Desai, S., Dobbs, M. A., Foley, R. J., Forman, W. R., Garmire, G. P., George, E. M., Gladders, M. D., Gonzalez, A. H., Grandis, S., Gupta, N., Halverson, N. W., Hlavacek-Larrondo, J., Hoekstra, H., Holder, G. P., Holzapfel, W. L., Hou, Z., Hrubes, J. D., Huang, N., Jones, C., Khullar, G., Knox, L., Kraft, R., Lee, A. T., Linden, A. von der, Luong-Van, D., Mantz, A., Marrone, D. P., McDonald, M., McMahon, J. J., Meyer, S. S., Mocanu, L. M., Mohr, J. J., Morris, R. G., Padin, S., Patil, S., Pryke, C., Rapetti, D., Reichardt, C. L., Rest, A., Ruhl, J. E., Saliwanchik, B. R., Saro, A., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Stalder, B., Stanford, S. A., Staniszewski, Z., Stark, A. A., Story, K. T., Strazzullo, V., Stubbs, C. W., Vanderlinde, K., Vieira, J. D., Vikhlinin, A., Williamson, R., and Zenteno, A. Cluster Cosmology Constraints from the 2500 deg2 SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope. United States: N. p., 2019. Web. doi:10.3847/1538-4357/ab1f10.
Bocquet, S., Dietrich, J. P., Schrabback, T., Bleem, L. E., Klein, M., Allen, S. W., Applegate, D. E., Ashby, M. L. N., Bautz, M., Bayliss, M., Benson, B. A., Brodwin, M., Bulbul, E., Canning, R. E. A., Capasso, R., Carlstrom, J. E., Chang, C. L., Chiu, I., Cho, H-M., Clocchiatti, A., Crawford, T. M., Crites, A. T., Haan, T. de, Desai, S., Dobbs, M. A., Foley, R. J., Forman, W. R., Garmire, G. P., George, E. M., Gladders, M. D., Gonzalez, A. H., Grandis, S., Gupta, N., Halverson, N. W., Hlavacek-Larrondo, J., Hoekstra, H., Holder, G. P., Holzapfel, W. L., Hou, Z., Hrubes, J. D., Huang, N., Jones, C., Khullar, G., Knox, L., Kraft, R., Lee, A. T., Linden, A. von der, Luong-Van, D., Mantz, A., Marrone, D. P., McDonald, M., McMahon, J. J., Meyer, S. S., Mocanu, L. M., Mohr, J. J., Morris, R. G., Padin, S., Patil, S., Pryke, C., Rapetti, D., Reichardt, C. L., Rest, A., Ruhl, J. E., Saliwanchik, B. R., Saro, A., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Stalder, B., Stanford, S. A., Staniszewski, Z., Stark, A. A., Story, K. T., Strazzullo, V., Stubbs, C. W., Vanderlinde, K., Vieira, J. D., Vikhlinin, A., Williamson, R., & Zenteno, A. Cluster Cosmology Constraints from the 2500 deg2 SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope. United States. doi:10.3847/1538-4357/ab1f10.
Bocquet, S., Dietrich, J. P., Schrabback, T., Bleem, L. E., Klein, M., Allen, S. W., Applegate, D. E., Ashby, M. L. N., Bautz, M., Bayliss, M., Benson, B. A., Brodwin, M., Bulbul, E., Canning, R. E. A., Capasso, R., Carlstrom, J. E., Chang, C. L., Chiu, I., Cho, H-M., Clocchiatti, A., Crawford, T. M., Crites, A. T., Haan, T. de, Desai, S., Dobbs, M. A., Foley, R. J., Forman, W. R., Garmire, G. P., George, E. M., Gladders, M. D., Gonzalez, A. H., Grandis, S., Gupta, N., Halverson, N. W., Hlavacek-Larrondo, J., Hoekstra, H., Holder, G. P., Holzapfel, W. L., Hou, Z., Hrubes, J. D., Huang, N., Jones, C., Khullar, G., Knox, L., Kraft, R., Lee, A. T., Linden, A. von der, Luong-Van, D., Mantz, A., Marrone, D. P., McDonald, M., McMahon, J. J., Meyer, S. S., Mocanu, L. M., Mohr, J. J., Morris, R. G., Padin, S., Patil, S., Pryke, C., Rapetti, D., Reichardt, C. L., Rest, A., Ruhl, J. E., Saliwanchik, B. R., Saro, A., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Stalder, B., Stanford, S. A., Staniszewski, Z., Stark, A. A., Story, K. T., Strazzullo, V., Stubbs, C. W., Vanderlinde, K., Vieira, J. D., Vikhlinin, A., Williamson, R., and Zenteno, A. Mon . "Cluster Cosmology Constraints from the 2500 deg2 SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope". United States. doi:10.3847/1538-4357/ab1f10.
@article{osti_1490847,
title = {Cluster Cosmology Constraints from the 2500 deg2 SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope},
author = {Bocquet, S. and Dietrich, J. P. and Schrabback, T. and Bleem, L. E. and Klein, M. and Allen, S. W. and Applegate, D. E. and Ashby, M. L. N. and Bautz, M. and Bayliss, M. and Benson, B. A. and Brodwin, M. and Bulbul, E. and Canning, R. E. A. and Capasso, R. and Carlstrom, J. E. and Chang, C. L. and Chiu, I. and Cho, H-M. and Clocchiatti, A. and Crawford, T. M. and Crites, A. T. and Haan, T. de and Desai, S. and Dobbs, M. A. and Foley, R. J. and Forman, W. R. and Garmire, G. P. and George, E. M. and Gladders, M. D. and Gonzalez, A. H. and Grandis, S. and Gupta, N. and Halverson, N. W. and Hlavacek-Larrondo, J. and Hoekstra, H. and Holder, G. P. and Holzapfel, W. L. and Hou, Z. and Hrubes, J. D. and Huang, N. and Jones, C. and Khullar, G. and Knox, L. and Kraft, R. and Lee, A. T. and Linden, A. von der and Luong-Van, D. and Mantz, A. and Marrone, D. P. and McDonald, M. and McMahon, J. J. and Meyer, S. S. and Mocanu, L. M. and Mohr, J. J. and Morris, R. G. and Padin, S. and Patil, S. and Pryke, C. and Rapetti, D. and Reichardt, C. L. and Rest, A. and Ruhl, J. E. and Saliwanchik, B. R. and Saro, A. and Sayre, J. T. and Schaffer, K. K. and Shirokoff, E. and Stalder, B. and Stanford, S. A. and Staniszewski, Z. and Stark, A. A. and Story, K. T. and Strazzullo, V. and Stubbs, C. W. and Vanderlinde, K. and Vieira, J. D. and Vikhlinin, A. and Williamson, R. and Zenteno, A.},
abstractNote = {We derive cosmological constraints using a galaxy cluster sample selected from the 2500 deg2 SPT-SZ survey. The sample spans the redshift range 0.25 < z < 1.75 and contains 343 clusters with SZ detection significance ξ > 5. The sample is supplemented with optical weak gravitational lensing measurements of 32 clusters with 0.29 < z < 1.13 (from Magellan and Hubble Space Telescope) and X-ray measurements of 89 clusters with 0.25 < z < 1.75 (from Chandra). We rely on minimal modeling assumptions: (i) weak lensing provides an accurate means of measuring halo masses, (ii) the mean SZ and X-ray observables are related to the true halo mass through power-law relations in mass and dimensionless Hubble parameter E(z) with a priori unknown parameters, and (iii) there is (correlated, lognormal) intrinsic scatter and measurement noise relating these observables to their mean relations. We simultaneously fit for these astrophysical modeling parameters and for cosmology. Assuming a flat νΛCDM model, in which the sum of neutrino masses is a free parameter, we measure Ωm = 0.276 ± 0.047, σ 8 = 0.781 ± 0.037, and σ 8(Ωm/0.3)0.2 = 0.766 ±0.025. The redshift evolutions of the X-ray Y X–mass and M gas–mass relations are both consistent with self-similar evolution to within 1σ. The mass slope of the Y X–mass relation shows a 2.3σ deviation from self-similarity. Similarly, the mass slope of the M gas–mass relation is steeper than self-similarity at the 2.5σ level. In a νwCDM cosmology, we measure the dark energy equation-of-state parameter w = -1.55 ± 0.41 from the cluster data. Here, we perform a measurement of the growth of structure since redshift z ~ 1.7 and find no evidence for tension with the prediction from general relativity. This is the first analysis of the SPT cluster sample that uses direct weak-lensing mass calibration and is a step toward using the much larger weak-lensing data set from DES. We provide updated redshift and mass estimates for the SPT sample.},
doi = {10.3847/1538-4357/ab1f10},
journal = {The Astrophysical Journal (Online)},
number = 1,
volume = 878,
place = {United States},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 10, 2020
Publisher's Version of Record

Save / Share: