skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Catalyst-Inspired Charge Carriers for High Energy Density Redox Flow Batteries

Abstract

We introduce a theoretical design approach aiming at improving energy density of redox flow batteries (RFBs) via the utilization of redox non-innocent ligands capable of stabilizing a metal center in a wide range of oxidation states. Our findings suggest that this promotes the possibility of multiple redox events as well as high open circuit voltages. Specifically, we have proposed two Fe-coordination complexes (I, Fe(Me2Pytacn)(C2N3H2), and II, Fe(H2pmen)(C2N3H2)) combining two different types of ligands, i.e., catalyst-inspired scaffolds and triazole ring, which were previously shown to promote high and low oxidation states in transition metals, respectively. These complexes exhibit as many as six theoretical redox events in the full range of charge states +4 → -2, several of which reside within the electrochemical window of acetonitrile. Electronic structure calculations show that the Fe center exhibits oxidation states ranging from the very rare Fe4+ to Fe1+. Values of the reduction potentials as well as nature of the redox events of both complexes is found to be similar in their high +4 → +1 charge states. In contrast, while exhibiting qualitatively similar redox behavior in the lower 0 → -2 range, some differences in the electronic ground states, delocalization patterns as well as reductionmore » potential values are also observed. The calculated open circuit voltages can reach values of 5.09 and 6.14 V for complexes I and II, respectively, and hold promise to be experimentally accessible within the electrochemical window of acetonitrile expanded by addition of ionic liquids. Finally, the current results obtained for these two complexes are intended to illustrate a more general principle based on the simultaneous utilization of two types of ligands responsible for the stabilization of high and low oxidation states of the metal that can be used to design the next-generation charge carriers capable of supporting multi-electron redox and operating in a broad range of charge states, leading to RFBs with greater energy density.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1490770
Alternate Identifier(s):
OSTI ID: 1494464
Report Number(s):
LA-UR-18-28568
Journal ID: ISSN 2296-424X; 141
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Published Article
Journal Name:
Frontiers in Physics
Additional Journal Information:
Journal Name: Frontiers in Physics Journal Volume: 6; Journal ID: ISSN 2296-424X
Publisher:
Frontiers Research Foundation
Country of Publication:
Switzerland
Language:
English
Subject:
25 ENERGY STORAGE; Energy Sciences; Organic Chemistry

Citation Formats

Popov, Ivan A., Davis, Benjamin L., Mukundan, Rangachary, Batista, Enrique R., and Yang, Ping. Catalyst-Inspired Charge Carriers for High Energy Density Redox Flow Batteries. Switzerland: N. p., 2019. Web. https://doi.org/10.3389/fphy.2018.00141.
Popov, Ivan A., Davis, Benjamin L., Mukundan, Rangachary, Batista, Enrique R., & Yang, Ping. Catalyst-Inspired Charge Carriers for High Energy Density Redox Flow Batteries. Switzerland. https://doi.org/10.3389/fphy.2018.00141
Popov, Ivan A., Davis, Benjamin L., Mukundan, Rangachary, Batista, Enrique R., and Yang, Ping. Mon . "Catalyst-Inspired Charge Carriers for High Energy Density Redox Flow Batteries". Switzerland. https://doi.org/10.3389/fphy.2018.00141.
@article{osti_1490770,
title = {Catalyst-Inspired Charge Carriers for High Energy Density Redox Flow Batteries},
author = {Popov, Ivan A. and Davis, Benjamin L. and Mukundan, Rangachary and Batista, Enrique R. and Yang, Ping},
abstractNote = {We introduce a theoretical design approach aiming at improving energy density of redox flow batteries (RFBs) via the utilization of redox non-innocent ligands capable of stabilizing a metal center in a wide range of oxidation states. Our findings suggest that this promotes the possibility of multiple redox events as well as high open circuit voltages. Specifically, we have proposed two Fe-coordination complexes (I, Fe(Me2Pytacn)(C2N3H2), and II, Fe(H2pmen)(C2N3H2)) combining two different types of ligands, i.e., catalyst-inspired scaffolds and triazole ring, which were previously shown to promote high and low oxidation states in transition metals, respectively. These complexes exhibit as many as six theoretical redox events in the full range of charge states +4 → -2, several of which reside within the electrochemical window of acetonitrile. Electronic structure calculations show that the Fe center exhibits oxidation states ranging from the very rare Fe4+ to Fe1+. Values of the reduction potentials as well as nature of the redox events of both complexes is found to be similar in their high +4 → +1 charge states. In contrast, while exhibiting qualitatively similar redox behavior in the lower 0 → -2 range, some differences in the electronic ground states, delocalization patterns as well as reduction potential values are also observed. The calculated open circuit voltages can reach values of 5.09 and 6.14 V for complexes I and II, respectively, and hold promise to be experimentally accessible within the electrochemical window of acetonitrile expanded by addition of ionic liquids. Finally, the current results obtained for these two complexes are intended to illustrate a more general principle based on the simultaneous utilization of two types of ligands responsible for the stabilization of high and low oxidation states of the metal that can be used to design the next-generation charge carriers capable of supporting multi-electron redox and operating in a broad range of charge states, leading to RFBs with greater energy density.},
doi = {10.3389/fphy.2018.00141},
journal = {Frontiers in Physics},
number = ,
volume = 6,
place = {Switzerland},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.3389/fphy.2018.00141

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

FIGURE 1 FIGURE 1: Structures of complex I, Fe(Me2Pytacn)(C2N3H2); and II, Fe(H2pmen)(C2N3H2), where Me2Pytacn=1-(2’-pyridylmethyl)-4,7-dimethyl -1,4,7-triazacyclononane, H2pmen=N,N′-bis(2-pyridylmethyl)ethylenediamine, and C2N3H2 = 1,2,4-triazole.

Save / Share:

Works referenced in this record:

A multiple ion-exchange membrane design for redox flow batteries
journal, January 2014

  • Gu, Shuang; Gong, Ke; Yan, Emily Z.
  • Energy Environ. Sci., Vol. 7, Issue 9
  • DOI: 10.1039/C4EE00165F

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Unraveling the Mechanism of Water Oxidation Catalyzed by Nonheme Iron Complexes
journal, March 2014

  • Acuña-Parés, Ferran; Codolà, Zoel; Costas, Miquel
  • Chemistry - A European Journal, Vol. 20, Issue 19
  • DOI: 10.1002/chem.201304367

Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries
journal, January 2014

  • Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.
  • Energy & Environmental Science, Vol. 7, Issue 11, p. 3459-3477
  • DOI: 10.1039/C4EE02158D

Progress in Flow Battery Research and Development
journal, June 2011

  • Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.
  • Journal of The Electrochemical Society, Vol. 158, Issue 8, p. R55-R79
  • DOI: 10.1149/1.3599565

Peculiar All-Metal σ-Aromaticity of the [Au 2 Sb 16 ] 4− Anion in the Solid State
journal, November 2016

  • Popov, Ivan A.; Pan, Fu-Xing; You, Xue-Rui
  • Angewandte Chemie International Edition, Vol. 55, Issue 49
  • DOI: 10.1002/anie.201609497

How Much Can Density Functional Approximations (DFA) Fail? The Extreme Case of the FeO 4 Species
journal, March 2016

  • Huang, Wei; Xing, Deng-Hui; Lu, Jun-Bo
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 4
  • DOI: 10.1021/acs.jctc.5b01040

A polyoxometalate flow battery
journal, August 2013


Ruthenium based redox flow battery for solar energy storage
journal, July 2011

  • Chakrabarti, Mohammed Harun; Roberts, Edward Pelham Lindfield; Bae, Chulheung
  • Energy Conversion and Management, Vol. 52, Issue 7
  • DOI: 10.1016/j.enconman.2011.01.012

Capacity Decay and Remediation of Nafion-based All-Vanadium Redox Flow Batteries
journal, December 2012


Predicting the potentials, solubilities and stabilities of metal-acetylacetonates for non-aqueous redox flow batteries using density functional theory calculations
journal, January 2017

  • Kucharyson, J. F.; Cheng, L.; Tung, S. O.
  • Journal of Materials Chemistry A, Vol. 5, Issue 26
  • DOI: 10.1039/C7TA01285C

Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries
journal, January 2012

  • Kim, Ki Jae; Park, Min-Sik; Kim, Jae-Hun
  • Chemical Communications, Vol. 48, Issue 44
  • DOI: 10.1039/c2cc31433a

Electrochemical investigation of uranium β-diketonates for all-uranium redox flow battery
journal, November 2002


Electronic Structures of the Electron Transfer Series [M(bpy) 3 ] n , [M(tpy) 2 ] n , and [Fe( t bpy) 3 ] n (M = Fe, Ru; n = 3+, 2+, 1+, 0, 1-): A Mössbauer Spectroscopic and DFT Study : [M(bpy)
journal, June 2012

  • England, Jason; Scarborough, Christopher C.; Weyhermüller, Thomas
  • European Journal of Inorganic Chemistry, Vol. 2012, Issue 29
  • DOI: 10.1002/ejic.201200232

”Developing paradigms of chemical bonding: adaptive natural density partitioning
journal, January 2008

  • Zubarev, Dmitry Yu.; Boldyrev, Alexander I.
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 34
  • DOI: 10.1039/b804083d

Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries
journal, November 2010

  • Liu, Qinghua; Shinkle, Aaron A.; Li, Yongdan
  • Electrochemistry Communications, Vol. 12, Issue 11, p. 1634-1637
  • DOI: 10.1016/j.elecom.2010.09.013

Anthraquinone with tailored structure for a nonaqueous metal–organic redox flow battery
journal, January 2012

  • Wang, Wei; Xu, Wu; Cosimbescu, Lelia
  • Chemical Communications, Vol. 48, Issue 53, p. 6669-6671
  • DOI: 10.1039/c2cc32466k

Structure and Chemistry of Cytochrome P450
journal, June 2005

  • Denisov, Ilia G.; Makris, Thomas M.; Sligar, Stephen G.
  • Chemical Reviews, Vol. 105, Issue 6
  • DOI: 10.1021/cr0307143

Application of Redox Non-Innocent Ligands to Non-Aqueous Flow Battery Electrolytes
journal, September 2013

  • Cappillino, Patrick J.; Pratt, Harry D.; Hudak, Nicholas S.
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300566

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Vanadium redox cell electrolyte optimization studies
journal, May 1990

  • Kazacos, M.; Cheng, M.; Skyllas-Kazacos, M.
  • Journal of Applied Electrochemistry, Vol. 20, Issue 3
  • DOI: 10.1007/BF01076057

Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries
journal, July 2011

  • Sleightholme, Alice E. S.; Shinkle, Aaron A.; Liu, Qinghua
  • Journal of Power Sources, Vol. 196, Issue 13, p. 5742-5745
  • DOI: 10.1016/j.jpowsour.2011.02.020

Performance Characteristics of Carbon Plastic Electrodes in the All-Vanadium Redox Cell
journal, January 1989

  • Kazacos, M.
  • Journal of The Electrochemical Society, Vol. 136, Issue 9
  • DOI: 10.1149/1.2097588

Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs
journal, January 2015

  • Gong, Ke; Fang, Qianrong; Gu, Shuang
  • Energy & Environmental Science, Vol. 8, Issue 12, p. 3515-3530
  • DOI: 10.1039/C5EE02341F

Continuous surface charge polarizable continuum models of solvation. I. General formalism
journal, March 2010

  • Scalmani, Giovanni; Frisch, Michael J.
  • The Journal of Chemical Physics, Vol. 132, Issue 11
  • DOI: 10.1063/1.3359469

A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage
journal, March 2011

  • Li, Liyu; Kim, Soowhan; Wang, Wei
  • Advanced Energy Materials, Vol. 1, Issue 3, p. 394-400
  • DOI: 10.1002/aenm.201100008

A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics
journal, August 1997

  • Cancès, E.; Mennucci, B.; Tomasi, J.
  • The Journal of Chemical Physics, Vol. 107, Issue 8
  • DOI: 10.1063/1.474659

Next-Generation, High-Energy-Density Redox Flow Batteries
journal, July 2014


Membrane-less hydrogen bromine flow battery
journal, August 2013

  • Braff, William A.; Bazant, Martin Z.; Buie, Cullen R.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3346

A Li-Liquid Cathode Battery Based on a Hybrid Electrolyte
journal, August 2011


Calculation of One-Electron Redox Potentials Revisited. Is It Possible to Calculate Accurate Potentials with Density Functional Methods?
journal, June 2009

  • Roy, Lindsay E.; Jakubikova, Elena; Guthrie, M. Graham
  • The Journal of Physical Chemistry A, Vol. 113, Issue 24
  • DOI: 10.1021/jp811388w

On the Innocence of Bipyridine Ligands: How Well Do DFT Functionals Fare for These Challenging Spin Systems?
journal, November 2013

  • Milko, Petr; Iron, Mark A.
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 1
  • DOI: 10.1021/ct400913z

Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries
journal, December 2009

  • Liu, Qinghua; Sleightholme, Alice E. S.; Shinkle, Aaron A.
  • Electrochemistry Communications, Vol. 11, Issue 12, p. 2312-2315
  • DOI: 10.1016/j.elecom.2009.10.006

Cyclic voltammetry of iron dimine complexes in acetonitrile
journal, March 1977

  • Chum, Helena Li; Rock, Monica; Murakami, Neyde Y.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 76, Issue 3
  • DOI: 10.1016/S0022-0728(77)80480-4

Electrochemical catalytic activity of tungsten trioxide- modified graphite felt toward VO2+/VO2+ redox reaction
journal, June 2014


Redox flow cells for energy conversion
journal, September 2006

  • Ponce de Leon, C.; Frias-Ferrer, A.; Gonzalez-Garcia, J.
  • Journal of Power Sources, Vol. 160, Issue 1, p. 716-732
  • DOI: 10.1016/j.jpowsour.2006.02.095

Mechanism-Based Development of a Low-Potential, Soluble, and Cyclable Multielectron Anolyte for Nonaqueous Redox Flow Batteries
journal, November 2016

  • Sevov, Christo S.; Fisher, Sydney L.; Thompson, Levi T.
  • Journal of the American Chemical Society, Vol. 138, Issue 47
  • DOI: 10.1021/jacs.6b07638

Complexing Additives to Reduce the Immiscible Phase Formed in the Hybrid ZnBr 2 Flow Battery
journal, January 2017

  • Bryans, D.; McMillan, B. G.; Spicer, M.
  • Journal of The Electrochemical Society, Vol. 164, Issue 13
  • DOI: 10.1149/2.1651713jes

Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]
journal, February 1997


Efficient water oxidation catalysts based on readily available iron coordination complexes
journal, September 2011

  • Fillol, Julio Lloret; Codolà, Zoel; Garcia-Bosch, Isaac
  • Nature Chemistry, Vol. 3, Issue 10
  • DOI: 10.1038/nchem.1140

Aqueous Cathode for Next-Generation Alkali-Ion Batteries
journal, April 2011

  • Lu, Yuhao; Goodenough, John B.; Kim, Youngsik
  • Journal of the American Chemical Society, Vol. 133, Issue 15
  • DOI: 10.1021/ja201118f

Development of metal-based electrodes for non-aqueous redox flow batteries
journal, September 2011


Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Ion exchange membranes for vanadium redox flow battery (VRB) applications
journal, March 2011

  • Li, Xianfeng; Zhang, Huamin; Mai, Zhensheng
  • Energy & Environmental Science, Vol. 4, Issue 4, p. 1147-1160
  • DOI: 10.1039/c0ee00770f

All-Soluble All-Iron Aqueous Redox-Flow Battery
journal, May 2016


Extended Electrochemical Windows Made Accessible by Room Temperature Ionic Liquid/Organic Solvent Electrolyte Systems
journal, January 2006

  • Buzzeo, Marisa C.; Hardacre, Christopher; Compton, Richard G.
  • ChemPhysChem, Vol. 7, Issue 1
  • DOI: 10.1002/cphc.200500361

Natural hybrid orbitals
journal, September 1980

  • Foster, J. P.; Weinhold, F.
  • Journal of the American Chemical Society, Vol. 102, Issue 24
  • DOI: 10.1021/ja00544a007

THE CHEMICAL BONDING OF Re 3 Cl 9 AND REVEALED BY THE ADAPTIVE NATURAL DENSITY PARTITIONING ANALYSES
journal, March 2010

  • Sergeeva, Alina P.; Boldyrev, Alexander I.
  • Comments on Inorganic Chemistry, Vol. 31, Issue 1-2
  • DOI: 10.1080/02603590903498639

Stabilization of Low-Oxidation-State Early Transition-Metal Complexes Bearing 1,2,4-Triphosphacyclopentadienyl Ligands: Structure of [{Sc(P3C2tBu2)2}2]; ScII or Mixed Oxidation State?
journal, March 2003

  • Clentsmith, Guy K. B.; Cloke, F. Geoffrey N.; Green, Jennifer C.
  • Angewandte Chemie International Edition, Vol. 42, Issue 9
  • DOI: 10.1002/anie.200390267

Localized states in reduced and excited-state ruthenium(II) terpyridyls
journal, November 1988

  • Berger, Robert M.; McMillin, David R.
  • Inorganic Chemistry, Vol. 27, Issue 23
  • DOI: 10.1021/ic00296a032

A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective
journal, January 2013

  • Shin, Sung-Hee; Yun, Sung-Hyun; Moon, Seung-Hyeon
  • RSC Advances, Vol. 3, Issue 24, p. 9095-9116
  • DOI: 10.1039/c3ra00115f

Spatially isolated redox orbitals: evidence from low-temperature voltammetry
journal, October 1983

  • Ohsawa, Yasuhiko; DeArmond, M. Keith; Hanck, Kenneth W.
  • Journal of the American Chemical Society, Vol. 105, Issue 21
  • DOI: 10.1021/ja00359a045

Redox flow batteries a review
journal, September 2011

  • Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.
  • Journal of Applied Electrochemistry, Vol. 41, Issue 10, p. 1137-1164
  • DOI: 10.1007/s10800-011-0348-2

A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte
journal, November 1988

  • Matsuda, Y.; Tanaka, K.; Okada, M.
  • Journal of Applied Electrochemistry, Vol. 18, Issue 6, p. 909-914
  • DOI: 10.1007/BF01016050

Membraneless Vanadium Redox Fuel Cell Using Laminar Flow
journal, November 2002

  • Ferrigno, Rosaria; Stroock, Abraham D.; Clark, Thomas D.
  • Journal of the American Chemical Society, Vol. 124, Issue 44
  • DOI: 10.1021/ja020812q

The application of a non-aqueous bis(acetylacetone)ethylenediamine cobalt electrolyte in redox flow battery
journal, November 2012


Cobalt-centred boron molecular drums with the highest coordination number in the CoB16− cluster
journal, October 2015

  • Popov, Ivan A.; Jian, Tian; Lopez, Gary V.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9654

Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid
journal, June 2012

  • Liu, Jun; Zhang, Ji-Guang; Yang, Zhenguo
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200690

Polarographic studies on bipyridines complexes
journal, March 1975

  • Saji, T.; Aoyagui, S.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 60, Issue 1
  • DOI: 10.1016/S0022-0728(75)80196-3

Increasing the Open-Circuit Voltage of Dye-Sensitized Solar Cells via Metal-Ion Coordination
journal, September 2017


Impact of Ligand Substitutions on Multielectron Redox Properties of Fe Complexes Supported by Nitrogenous Chelates
journal, November 2018


Flow Batteries: Current Status and Trends
journal, September 2015

  • Soloveichik, Grigorii L.
  • Chemical Reviews, Vol. 115, Issue 20
  • DOI: 10.1021/cr500720t

Designing Redox-Stable Cobalt-Polypyridyl Complexes for Redox Flow Batteries: Spin-Crossover Delocalizes Excess Charge
journal, January 2018

  • Yang, Chunzhen; Nikiforidis, Georgios; Park, Ji Young
  • Advanced Energy Materials, Vol. 8, Issue 14
  • DOI: 10.1002/aenm.201702897

Membrane Development for Vanadium Redox Flow Batteries
journal, October 2011


Reduction potential predictions of some aromatic nitrogen-containing molecules
journal, January 2014

  • Assary, Rajeev S.; Brushett, Fikile R.; Curtiss, Larry A.
  • RSC Adv., Vol. 4, Issue 101
  • DOI: 10.1039/C4RA08563A

Dioxygen Activation at Mononuclear Nonheme Iron Active Sites:  Enzymes, Models, and Intermediates
journal, February 2004

  • Costas, Miquel; Mehn, Mark P.; Jensen, Michael P.
  • Chemical Reviews, Vol. 104, Issue 2
  • DOI: 10.1021/cr020628n

Consequences of N , C , N ′- and C , N , N ′-Coordination Modes on Electronic and Photophysical Properties of Cyclometalated Aryl Ruthenium(II) Complexes
journal, March 2009

  • Wadman, Sipke H.; Lutz, Martin; Tooke, Duncan M.
  • Inorganic Chemistry, Vol. 48, Issue 5
  • DOI: 10.1021/ic801595m

Spectro-electrochemical studies on tris-bipyridyl ruthenium complexes; ultra-violet, visible, and near-infrared spectra of the series [Ru(bipyridyl)3]2+/1+/0/1?
journal, January 1981

  • Heath, Graham A.; Yellowlees, Lesley J.; Braterman, Paul S.
  • Journal of the Chemical Society, Chemical Communications, Issue 6
  • DOI: 10.1039/c39810000287

An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery
journal, June 2012

  • Brushett, Fikile R.; Vaughey, John T.; Jansen, Andrew N.
  • Advanced Energy Materials, Vol. 2, Issue 11, p. 1390-1396
  • DOI: 10.1002/aenm.201200322

A metal-free organic–inorganic aqueous flow battery
journal, January 2014

  • Huskinson, Brian; Marshak, Michael P.; Suh, Changwon
  • Nature, Vol. 505, Issue 7482, p. 195-198
  • DOI: 10.1038/nature12909

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.