skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fluid-enhanced surface diffusion controls intraparticle phase transformations

Abstract

Phase transformations driven by compositional change require mass flux across a phase boundary. In some anisotropic solids, however, the phase boundary moves along a non-conductive crystallographic direction. One such material is Li XFePO 4, an electrode for lithium-ion batteries. With poor bulk ionic transport along the direction of phase separation, it is unclear how lithium migrates during phase transformations. Here, we show that lithium migrates along the solid/liquid interface without leaving the particle, whereby charge carriers do not cross the double layer. X-ray diffraction and microscopy experiments as well as ab initio molecular dynamics simulations show that organic solvent and water molecules promote this surface ion diffusion, effectively rendering Li XFePO 4 a three-dimensional lithium-ion conductor. Phase-field simulations capture the effects of surface diffusion on phase transformation. Lowering surface diffusivity is crucial towards supressing phase separation. In conclusion, this work establishes fluid-enhanced surface diffusion as a key dial for tuning phase transformation in anisotropic solids.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [3]; ORCiD logo [5]; ORCiD logo [4];  [4];  [4];  [6];  [4]; ORCiD logo [4]; ORCiD logo [3];  [7];  [8];  [2];  [9];  [3]
  1. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  2. Univ. of Bath, Bath (United Kingdom)
  3. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Stanford Univ., Stanford, CA (United States)
  5. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  6. National Institute of Chemistry, Ljubljana (Slovenia)
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  8. Univ. of Ljubljana, Ljubljana (Slovenia)
  9. Stanford Univ., Stanford, CA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1490653
Alternate Identifier(s):
OSTI ID: 1512363
Grant/Contract Number:  
AC02-76SF00515; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
Journal Volume: 17; Journal Issue: 10; Journal ID: ISSN 1476-1122
Publisher:
Springer Nature - Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Li, Yiyang, Chen, Hungru, Lim, Kipil, Deng, Haitao D., Lim, Jongwoo, Fraggedakis, Dimitrios, Attia, Peter M., Lee, Sang Chul, Jin, Norman, Moškon, Jože, Guan, Zixuan, Gent, William E., Hong, Jihyun, Yu, Young -Sang, Gaberšček, Miran, Islam, M. Saiful, Bazant, Martin Z., and Chueh, William C. Fluid-enhanced surface diffusion controls intraparticle phase transformations. United States: N. p., 2018. Web. doi:10.1038/s41563-018-0168-4.
Li, Yiyang, Chen, Hungru, Lim, Kipil, Deng, Haitao D., Lim, Jongwoo, Fraggedakis, Dimitrios, Attia, Peter M., Lee, Sang Chul, Jin, Norman, Moškon, Jože, Guan, Zixuan, Gent, William E., Hong, Jihyun, Yu, Young -Sang, Gaberšček, Miran, Islam, M. Saiful, Bazant, Martin Z., & Chueh, William C. Fluid-enhanced surface diffusion controls intraparticle phase transformations. United States. doi:10.1038/s41563-018-0168-4.
Li, Yiyang, Chen, Hungru, Lim, Kipil, Deng, Haitao D., Lim, Jongwoo, Fraggedakis, Dimitrios, Attia, Peter M., Lee, Sang Chul, Jin, Norman, Moškon, Jože, Guan, Zixuan, Gent, William E., Hong, Jihyun, Yu, Young -Sang, Gaberšček, Miran, Islam, M. Saiful, Bazant, Martin Z., and Chueh, William C. Mon . "Fluid-enhanced surface diffusion controls intraparticle phase transformations". United States. doi:10.1038/s41563-018-0168-4. https://www.osti.gov/servlets/purl/1490653.
@article{osti_1490653,
title = {Fluid-enhanced surface diffusion controls intraparticle phase transformations},
author = {Li, Yiyang and Chen, Hungru and Lim, Kipil and Deng, Haitao D. and Lim, Jongwoo and Fraggedakis, Dimitrios and Attia, Peter M. and Lee, Sang Chul and Jin, Norman and Moškon, Jože and Guan, Zixuan and Gent, William E. and Hong, Jihyun and Yu, Young -Sang and Gaberšček, Miran and Islam, M. Saiful and Bazant, Martin Z. and Chueh, William C.},
abstractNote = {Phase transformations driven by compositional change require mass flux across a phase boundary. In some anisotropic solids, however, the phase boundary moves along a non-conductive crystallographic direction. One such material is LiXFePO4, an electrode for lithium-ion batteries. With poor bulk ionic transport along the direction of phase separation, it is unclear how lithium migrates during phase transformations. Here, we show that lithium migrates along the solid/liquid interface without leaving the particle, whereby charge carriers do not cross the double layer. X-ray diffraction and microscopy experiments as well as ab initio molecular dynamics simulations show that organic solvent and water molecules promote this surface ion diffusion, effectively rendering LiXFePO4 a three-dimensional lithium-ion conductor. Phase-field simulations capture the effects of surface diffusion on phase transformation. Lowering surface diffusivity is crucial towards supressing phase separation. In conclusion, this work establishes fluid-enhanced surface diffusion as a key dial for tuning phase transformation in anisotropic solids.},
doi = {10.1038/s41563-018-0168-4},
journal = {Nature Materials},
number = 10,
volume = 17,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Crystallographic directions, phase separation and in-plane lithium migration in a Li0.5FePO4 platelet particle.a, Solid solution LiXFePO4 separates into Li-rich and Li-poor phases. The phase boundaries lie along the ab and bc planes, and perpendicular to the [100] and [001] directions. Therefore, lithium must migrate in the [100] andmore » [001] directions. The [001] direction is the major axis along the plane, whereas the [100] direction is the minor axis. b, Cross-section schematic view of the crystallographic directions. Three possible in-plane migration paths are possible: bulk diffusion, surface diffusion and electrolyte diffusion in conjunction with interfacial (de)lithiation reactions. The dashed green lines indicate that electrolyte diffusion enables lithium transport between particles. The relative resistances of these three paths (Rbulk, RsurfD, and Rrxn) dictate the lithium migration path taken during the phase transformation.« less

Save / Share:

Works referenced in this record:

Surface Chemistry of LiFePO[sub 4] Studied by Mössbauer and X-Ray Photoelectron Spectroscopy and Its Effect on Electrochemical Properties
journal, January 2007

  • Rho, Young-Ho; Nazar, Linda F.; Perry, Laura
  • Journal of The Electrochemical Society, Vol. 154, Issue 4
  • DOI: 10.1149/1.2433539

Room-temperature miscibility gap in LixFePO4
journal, April 2006

  • Yamada, Atsuo; Koizumi, Hiroshi; Nishimura, Shin-ichi
  • Nature Materials, Vol. 5, Issue 5
  • DOI: 10.1038/nmat1634

Revisiting LiClO[sub 4] as an Electrolyte for Rechargeable Lithium-Ion Batteries
journal, January 2010

  • Marom, Rotem; Haik, Ortal; Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 157, Issue 8
  • DOI: 10.1149/1.3447750

Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4
journal, July 2008

  • Gibot, Pierre; Casas-Cabanas, Montse; Laffont, Lydia
  • Nature Materials, Vol. 7, Issue 9
  • DOI: 10.1038/nmat2245

Hidden Two-Step Phase Transition and Competing Reaction Pathways in LiFePO 4
journal, March 2017


Coherency Strain and the Kinetics of Phase Separation in LiFePO 4 Nanoparticles
journal, February 2012

  • Cogswell, Daniel A.; Bazant, Martin Z.
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn204177u

Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines
journal, June 2010


Theory of Coherent Nucleation in Phase-Separating Nanoparticles
journal, May 2013

  • Cogswell, Daniel A.; Bazant, Martin Z.
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl400497t

Kinetics of non-equilibrium lithium incorporation in LiFePO4
journal, July 2011

  • Malik, Rahul; Zhou, Fei; Ceder, G.
  • Nature Materials, Vol. 10, Issue 8
  • DOI: 10.1038/nmat3065

Electron Microscopy Study of the LiFePO[sub 4] to FePO[sub 4] Phase Transition
journal, January 2006

  • Chen, Guoying; Song, Xiangyun; Richardson, Thomas J.
  • Electrochemical and Solid-State Letters, Vol. 9, Issue 6
  • DOI: 10.1149/1.2192695

Experimental visualization of lithium diffusion in LixFePO4
journal, August 2008

  • Nishimura, Shin-ichi; Kobayashi, Genki; Ohoyama, Kenji
  • Nature Materials, Vol. 7, Issue 9
  • DOI: 10.1038/nmat2251

Free Energy for Protonation Reaction in Lithium-Ion Battery Cathode Materials
journal, September 2008

  • Benedek, R.; Thackeray, M. M.; van de Walle, A.
  • Chemistry of Materials, Vol. 20, Issue 17
  • DOI: 10.1021/cm703042r

Suppression of Phase Separation in LiFePO 4 Nanoparticles During Battery Discharge
journal, November 2011

  • Bai, Peng; Cogswell, Daniel A.; Bazant, Martin Z.
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl202764f

Rate-Induced Solubility and Suppression of the First-Order Phase Transition in Olivine LiFePO 4
journal, April 2014

  • Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P.
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl404285y

Particle Size Dependence of the Ionic Diffusivity
journal, October 2010

  • Malik, Rahul; Burch, Damian; Bazant, Martin
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl1023595

Sustainability and in situ monitoring in battery development
journal, December 2016

  • Grey, C. P.; Tarascon, J. M.
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4777

Recent Advances in First Principles Computational Research of Cathode Materials for Lithium-Ion Batteries
journal, April 2012

  • Meng, Ying Shirley; Arroyo-de Dompablo, M. Elena
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar2002396

Surface Effects on the Physical and Electrochemical Properties of Thin LiFePO 4 Particles
journal, January 2008

  • Zaghib, K.; Mauger, A.; Gendron, F.
  • Chemistry of Materials, Vol. 20, Issue 2
  • DOI: 10.1021/cm7027993

Design criteria for electrochemical shock resistant battery electrodes
journal, January 2012

  • Woodford, William H.; Carter, W. Craig; Chiang, Yet-Ming
  • Energy & Environmental Science, Vol. 5, Issue 7, p. 8014-8024
  • DOI: 10.1039/c2ee21874g

Aging of LiFePO4 upon exposure to H2O
journal, December 2008


Nonequilibrium Thermodynamics of Porous Electrodes
journal, January 2012

  • Ferguson, Todd R.; Bazant, Martin Z.
  • Journal of The Electrochemical Society, Vol. 159, Issue 12
  • DOI: 10.1149/2.048212jes

How Does Moisture Affect the Physical Property of Memristance for Anionic-Electronic Resistive Switching Memories?
journal, July 2015

  • Messerschmitt, Felix; Kubicek, Markus; Rupp, Jennifer L. M.
  • Advanced Functional Materials, Vol. 25, Issue 32
  • DOI: 10.1002/adfm.201501517

Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution
journal, October 2012

  • Trotochaud, Lena; Ranney, James K.; Williams, Kerisha N.
  • Journal of the American Chemical Society, Vol. 134, Issue 41
  • DOI: 10.1021/ja307507a

Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties
journal, January 2014

  • Islam, M. Saiful; Fisher, Craig A. J.
  • Chem. Soc. Rev., Vol. 43, Issue 1
  • DOI: 10.1039/C3CS60199D

Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

Tracking Non-Uniform Mesoscale Transport in LiFePO 4 Agglomerates During Electrochemical Cycling
journal, May 2015

  • Nelson Weker, Johanna; Li, Yiyang; Shanmugam, Rengarajan
  • ChemElectroChem, Vol. 2, Issue 10
  • DOI: 10.1002/celc.201500119

Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO 4 Olivine-Type Battery Material
journal, October 2005

  • Islam, M. Saiful; Driscoll, Daniel J.; Fisher, Craig A. J.
  • Chemistry of Materials, Vol. 17, Issue 20
  • DOI: 10.1021/cm050999v

Surface structures and crystal morphologies of LiFePO4: relevance to electrochemical behaviour
journal, January 2008

  • Fisher, Craig A. J.; Islam, M. Saiful
  • Journal of Materials Chemistry, Vol. 18, Issue 11
  • DOI: 10.1039/b715935h

The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1
journal, February 2005

  • Delacourt, Charles; Poizot, Philippe; Tarascon, Jean-Marie
  • Nature Materials, Vol. 4, Issue 3
  • DOI: 10.1038/nmat1335

On spinodal decomposition
journal, September 1961


Direct Observation of a Metastable Crystal Phase of Li x FePO 4 under Electrochemical Phase Transition
journal, April 2013

  • Orikasa, Yuki; Maeda, Takehiro; Koyama, Yukinori
  • Journal of the American Chemical Society, Vol. 135, Issue 15
  • DOI: 10.1021/ja312527x

Li Conductivity in Li[sub x]MPO[sub 4] (M = Mn, Fe, Co, Ni) Olivine Materials
journal, January 2004

  • Morgan, D.; Van der Ven, A.; Ceder, G.
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 2
  • DOI: 10.1149/1.1633511

Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique
journal, September 2008


Formation and Evolution of Nickel Silicide in Silicon Nanowires
journal, October 2014

  • Katsman, Alex; Beregovsky, Michael; Yaish, Yuval Eliyahu
  • IEEE Transactions on Electron Devices, Vol. 61, Issue 10
  • DOI: 10.1109/TED.2014.2342502

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model
journal, July 2008

  • Delmas, C.; Maccario, M.; Croguennec, L.
  • Nature Materials, Vol. 7, Issue 8
  • DOI: 10.1038/nmat2230

Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles
journal, August 2016


Dependence on Crystal Size of the Nanoscale Chemical Phase Distribution and Fracture in Li x FePO 4
journal, June 2015


Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes
journal, June 2014


Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces
journal, April 2008


Calculations of Li-Ion Diffusion in Olivine Phosphates
journal, September 2011

  • Dathar, Gopi Krishna Phani; Sheppard, Daniel; Stevenson, Keith J.
  • Chemistry of Materials, Vol. 23, Issue 17
  • DOI: 10.1021/cm201604g

The thermodynamic origin of hysteresis in insertion batteries
journal, April 2010

  • Dreyer, Wolfgang; Jamnik, Janko; Guhlke, Clemens
  • Nature Materials, Vol. 9, Issue 5
  • DOI: 10.1038/nmat2730

Physical and chemical tuning of two-dimensional transition metal dichalcogenides
journal, January 2015

  • Wang, Haotian; Yuan, Hongtao; Sae Hong, Seung
  • Chemical Society Reviews, Vol. 44, Issue 9
  • DOI: 10.1039/C4CS00287C

Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics
journal, June 2012

  • Bazant, Martin Z.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300145c

The Role of Surface and Interface Energy on Phase Stability of Nanosized Insertion Compounds
journal, April 2009

  • Wagemaker, Marnix; Mulder, Fokko M.; Van der Ven, Anton
  • Advanced Materials, Vol. 21, Issue 25-26
  • DOI: 10.1002/adma.200803038

Phase Transformation Dynamics in Porous Battery Electrodes
journal, November 2014


2D metal carbides and nitrides (MXenes) for energy storage
journal, January 2017


Lithium diffusion in Li1−xFePO4: the effect of cationic disorder
journal, January 2012

  • Tealdi, Cristina; Spreafico, Clelia; Mustarelli, Piercarlo
  • Journal of Materials Chemistry, Vol. 22, Issue 47
  • DOI: 10.1039/c2jm35585j

Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles
journal, November 2015

  • Griessen, Ronald; Strohfeldt, Nikolai; Giessen, Harald
  • Nature Materials, Vol. 15, Issue 3
  • DOI: 10.1038/nmat4480

Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes
journal, September 2014

  • Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R.
  • Nature Materials, Vol. 13, Issue 12
  • DOI: 10.1038/nmat4084

Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte
journal, August 2010

  • Luo, Jia-Yan; Cui, Wang-Jun; He, Ping
  • Nature Chemistry, Vol. 2, Issue 9
  • DOI: 10.1038/nchem.763

Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling
journal, September 2015

  • Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9333

Spatial cycles mediated by UNC119 solubilisation maintain Src family kinases plasma membrane localisation
journal, July 2017

  • Konitsiotis, Antonios D.; Roßmannek, Lisaweta; Stanoev, Angel
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-00116-3

Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design
journal, April 2016

  • Tao, Xinyong; Wang, Jianguo; Liu, Chong
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11203

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.