DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tuning SPT-3G Transition-Edge-Sensor Electrical Properties with a Four-Layer Ti–Au–Ti–Au Thin-Film Stack

Abstract

We have developed superconducting Ti transition-edge sensors with Au protection layers on the top and bottom for the South Pole Telescope's third-generation receiver (a cosmic microwave background polarimeter, due to be upgraded this austral summer of 2017/2018). The base Au layer (deposited on a thin Ti glue layer) isolates the Ti from any substrate effects; the top Au layer protects the Ti from oxidation during processing and subsequent use of the sensors. We control the transition temperature and normal resistance of the sensors by varying the sensor width and the relative thicknesses of the Ti and Au layers. The transition temperature is roughly six times more sensitive to the thickness of the base Au layer than to that of the top Au layer. The normal resistance is inversely proportional to sensor width for any given film configuration. For widths greater than five micrometers, the critical temperature is independent of width.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [6];  [7];  [1];  [8];  [9];  [10];  [11];  [12];  [6];  [5];  [6];  [10];  [10];  [13];  [14] more »;  [15];  [16];  [10];  [12];  [6];  [15];  [17];  [6];  [7];  [5];  [6];  [6];  [18];  [6];  [19];  [10];  [20];  [16];  [19];  [10];  [3];  [10];  [21];  [7];  [22];  [23];  [10];  [12];  [20];  [24];  [19];  [12];  [10];  [7];  [14];  [10];  [10];  [4];  [15];  [1];  [15];  [6];  [14];  [25];  [14];  [10];  [26];  [27];  [21];  [14];  [3];  [2];  [5];  [24];  [20];  [10];  [28];  [10];  [3];  [24] « less
  1. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP)
  2. Cardiff Univ. (United Kingdom)
  3. Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  5. National Inst. of Standards and Technology (NIST), Boulder, CO (United States)
  6. Univ. of California, Berkeley, CA (United States)
  7. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP)
  8. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Chicago, IL (United States)
  9. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Univ. of Chicago, IL (United States); Univ. of Chicago, IL (United States). Enrico Fermi Inst.
  10. Argonne National Lab. (ANL), Argonne, IL (United States)
  11. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Univ. of Chicago, IL (United States)
  12. McGill Univ., Montreal, QC (Canada)
  13. McGill Univ., Montreal, QC (Canada); Canadian Inst. for Advance Research, Toronto, ON (United States)
  14. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Univ. of Chicago, IL (United States)
  15. Univ. of Colorado, Boulder, CO (United States)
  16. Case Western Reserve Univ., Cleveland, OH (United States)
  17. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Illinois, Urbana, IL (United States)
  18. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States)
  19. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  20. Univ. of Illinois, Urbana, IL (United States)
  21. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  22. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Univ. of Chicago, IL (United States); Univ. of Chicago, IL (United States). Enrico Fermi Inst.
  23. Univ. of Chicago, IL (United States)
  24. Univ. of Toronto, ON (Canada)
  25. Three-Speed Logic, Inc., Vancouver, BC (Canada)
  26. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)
  27. Stanford Univ., CA (United States)
  28. Univ. of California, Berkeley, CA (United States); Univ. of California, Los Angeles, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Argonne National Laboratory (ANL), Argonne, IL (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); Natural Sciences and Engineering Research Council of Canada (NSERC); USDOE Office of Science (SC), High Energy Physics (HEP)
Contributing Org.:
SPT
OSTI Identifier:
1490488
Alternate Identifier(s):
OSTI ID: 1491028; OSTI ID: 1496028
Report Number(s):
FERMILAB-PUB-18-738-AE
Journal ID: ISSN 0022-2291; PII: 1910
Grant/Contract Number:  
AC02-76SF00515; PLR-1248097; PHY-1125897; GBMF 947; AC02-06CH11357; AC02-07CH11359; AST-0956135
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Low Temperature Physics
Additional Journal Information:
Journal Volume: 193; Journal Issue: 5-6; Journal ID: ISSN 0022-2291
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Proximity Effect; SPT-3G; Transition Edge Sensor; 79 ASTRONOMY AND ASTROPHYSICS; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY

Citation Formats

Carter, F. W., Ade, P. A. R., Ahmed, Z., Anderson, A. J., Austermann, J. E., Avva, J. S., Thakur, R. Basu, Bender, A. N., Benson, B. A., Carlstrom, J. E., Cecil, T., Chang, C. L., Cliche, J. F., Cukierman, A., Denison, E. V., de Haan, T., Ding, J., Divan, R., Dobbs, M. A., Dutcher, D., Everett, W., Foster, A., Gannon, R. N., Gilbert, A., Groh, J. C., Halverson, N. W., Harke-Hosemann, A. H., Harrington, N. L., Henning, J. W., Hilton, G. C., Holzapfel, W. L., Huang, N., Irwin, K. D., Jeong, O. B., Jonas, M., Khaire, T., Kofman, A. M., Korman, M., Kubik, D., Kuhlmann, S., Kuo, C. L., Kutepova, V., Lee, A. T., Lowitz, A. E., Meyer, S. S., Michalik, D., Miller, C. S., Montgomery, J., Nadolski, A., Natoli, T., Nguyen, H., Noble, G. I., Novosad, V., Padin, S., Pan, Z., Pearson, J., Posada, C. M., Rahlin, A., Ruhl, J. E., Saunders, L. J., Sayre, J. T., Shirley, I., Shirokoff, E., Smecher, G., Sobrin, J. A., Stan, L., Stark, A. A., Story, K. T., Suzuki, A., Tang, Q. Y., Thompson, K. L., Tucker, C., Vale, L. R., Vanderlinde, K., Vieira, J. D., Wang, G., Whitehorn, N., Yefremenko, V., Yoon, K. W., and Young, M. R. Tuning SPT-3G Transition-Edge-Sensor Electrical Properties with a Four-Layer Ti–Au–Ti–Au Thin-Film Stack. United States: N. p., 2018. Web. doi:10.1007/s10909-018-1910-7.
Carter, F. W., Ade, P. A. R., Ahmed, Z., Anderson, A. J., Austermann, J. E., Avva, J. S., Thakur, R. Basu, Bender, A. N., Benson, B. A., Carlstrom, J. E., Cecil, T., Chang, C. L., Cliche, J. F., Cukierman, A., Denison, E. V., de Haan, T., Ding, J., Divan, R., Dobbs, M. A., Dutcher, D., Everett, W., Foster, A., Gannon, R. N., Gilbert, A., Groh, J. C., Halverson, N. W., Harke-Hosemann, A. H., Harrington, N. L., Henning, J. W., Hilton, G. C., Holzapfel, W. L., Huang, N., Irwin, K. D., Jeong, O. B., Jonas, M., Khaire, T., Kofman, A. M., Korman, M., Kubik, D., Kuhlmann, S., Kuo, C. L., Kutepova, V., Lee, A. T., Lowitz, A. E., Meyer, S. S., Michalik, D., Miller, C. S., Montgomery, J., Nadolski, A., Natoli, T., Nguyen, H., Noble, G. I., Novosad, V., Padin, S., Pan, Z., Pearson, J., Posada, C. M., Rahlin, A., Ruhl, J. E., Saunders, L. J., Sayre, J. T., Shirley, I., Shirokoff, E., Smecher, G., Sobrin, J. A., Stan, L., Stark, A. A., Story, K. T., Suzuki, A., Tang, Q. Y., Thompson, K. L., Tucker, C., Vale, L. R., Vanderlinde, K., Vieira, J. D., Wang, G., Whitehorn, N., Yefremenko, V., Yoon, K. W., & Young, M. R. Tuning SPT-3G Transition-Edge-Sensor Electrical Properties with a Four-Layer Ti–Au–Ti–Au Thin-Film Stack. United States. https://doi.org/10.1007/s10909-018-1910-7
Carter, F. W., Ade, P. A. R., Ahmed, Z., Anderson, A. J., Austermann, J. E., Avva, J. S., Thakur, R. Basu, Bender, A. N., Benson, B. A., Carlstrom, J. E., Cecil, T., Chang, C. L., Cliche, J. F., Cukierman, A., Denison, E. V., de Haan, T., Ding, J., Divan, R., Dobbs, M. A., Dutcher, D., Everett, W., Foster, A., Gannon, R. N., Gilbert, A., Groh, J. C., Halverson, N. W., Harke-Hosemann, A. H., Harrington, N. L., Henning, J. W., Hilton, G. C., Holzapfel, W. L., Huang, N., Irwin, K. D., Jeong, O. B., Jonas, M., Khaire, T., Kofman, A. M., Korman, M., Kubik, D., Kuhlmann, S., Kuo, C. L., Kutepova, V., Lee, A. T., Lowitz, A. E., Meyer, S. S., Michalik, D., Miller, C. S., Montgomery, J., Nadolski, A., Natoli, T., Nguyen, H., Noble, G. I., Novosad, V., Padin, S., Pan, Z., Pearson, J., Posada, C. M., Rahlin, A., Ruhl, J. E., Saunders, L. J., Sayre, J. T., Shirley, I., Shirokoff, E., Smecher, G., Sobrin, J. A., Stan, L., Stark, A. A., Story, K. T., Suzuki, A., Tang, Q. Y., Thompson, K. L., Tucker, C., Vale, L. R., Vanderlinde, K., Vieira, J. D., Wang, G., Whitehorn, N., Yefremenko, V., Yoon, K. W., and Young, M. R. Wed . "Tuning SPT-3G Transition-Edge-Sensor Electrical Properties with a Four-Layer Ti–Au–Ti–Au Thin-Film Stack". United States. https://doi.org/10.1007/s10909-018-1910-7. https://www.osti.gov/servlets/purl/1490488.
@article{osti_1490488,
title = {Tuning SPT-3G Transition-Edge-Sensor Electrical Properties with a Four-Layer Ti–Au–Ti–Au Thin-Film Stack},
author = {Carter, F. W. and Ade, P. A. R. and Ahmed, Z. and Anderson, A. J. and Austermann, J. E. and Avva, J. S. and Thakur, R. Basu and Bender, A. N. and Benson, B. A. and Carlstrom, J. E. and Cecil, T. and Chang, C. L. and Cliche, J. F. and Cukierman, A. and Denison, E. V. and de Haan, T. and Ding, J. and Divan, R. and Dobbs, M. A. and Dutcher, D. and Everett, W. and Foster, A. and Gannon, R. N. and Gilbert, A. and Groh, J. C. and Halverson, N. W. and Harke-Hosemann, A. H. and Harrington, N. L. and Henning, J. W. and Hilton, G. C. and Holzapfel, W. L. and Huang, N. and Irwin, K. D. and Jeong, O. B. and Jonas, M. and Khaire, T. and Kofman, A. M. and Korman, M. and Kubik, D. and Kuhlmann, S. and Kuo, C. L. and Kutepova, V. and Lee, A. T. and Lowitz, A. E. and Meyer, S. S. and Michalik, D. and Miller, C. S. and Montgomery, J. and Nadolski, A. and Natoli, T. and Nguyen, H. and Noble, G. I. and Novosad, V. and Padin, S. and Pan, Z. and Pearson, J. and Posada, C. M. and Rahlin, A. and Ruhl, J. E. and Saunders, L. J. and Sayre, J. T. and Shirley, I. and Shirokoff, E. and Smecher, G. and Sobrin, J. A. and Stan, L. and Stark, A. A. and Story, K. T. and Suzuki, A. and Tang, Q. Y. and Thompson, K. L. and Tucker, C. and Vale, L. R. and Vanderlinde, K. and Vieira, J. D. and Wang, G. and Whitehorn, N. and Yefremenko, V. and Yoon, K. W. and Young, M. R.},
abstractNote = {We have developed superconducting Ti transition-edge sensors with Au protection layers on the top and bottom for the South Pole Telescope's third-generation receiver (a cosmic microwave background polarimeter, due to be upgraded this austral summer of 2017/2018). The base Au layer (deposited on a thin Ti glue layer) isolates the Ti from any substrate effects; the top Au layer protects the Ti from oxidation during processing and subsequent use of the sensors. We control the transition temperature and normal resistance of the sensors by varying the sensor width and the relative thicknesses of the Ti and Au layers. The transition temperature is roughly six times more sensitive to the thickness of the base Au layer than to that of the top Au layer. The normal resistance is inversely proportional to sensor width for any given film configuration. For widths greater than five micrometers, the critical temperature is independent of width.},
doi = {10.1007/s10909-018-1910-7},
journal = {Journal of Low Temperature Physics},
number = 5-6,
volume = 193,
place = {United States},
year = {Wed Apr 18 00:00:00 EDT 2018},
month = {Wed Apr 18 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Fig. 1 Visualization of parameter phase space for TES Tc and RN. Background color indicates total detector NEP (thermal, electrical, and an expected readout noise of 10 pA/√Hz) excluding contributions from photon noise. White dashed lines indicate boundary constraints in the parameter space that are set by variousmore » physical processes. The white star labeled “target” is the optimal combination of Tc and RN given existing constraints and fabrication tolerances (Color figure online)« less

Save / Share:

Works referenced in this record:

Transition-Edge Sensors
book, July 2005


Superconductive properties of thin dirty superconductor–normal-metal bilayers
journal, February 2001


Optimization of Transition Edge Sensor Arrays for Cosmic Microwave Background Observations With the South Pole Telescope
journal, June 2017

  • Ding, Junjia; Ade, P. A. R.; Anderson, A. J.
  • IEEE Transactions on Applied Superconductivity, Vol. 27, Issue 4
  • DOI: 10.1109/TASC.2016.2639378

Integrated performance of a frequency domain multiplexing readout in the SPT-3G receiver
conference, July 2016

  • Bender, A. N.; Ade, P. A. R.; Anderson, A. J.
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.2232146

Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements
journal, July 2012

  • Dobbs, M. A.; Lueker, M.; Aird, K. A.
  • Review of Scientific Instruments, Vol. 83, Issue 7
  • DOI: 10.1063/1.4737629

Works referencing / citing this record:

Thermal Links and Microstrip Transmission Lines in SPT-3G Bolometers
journal, June 2018


Fabrication of Detector Arrays for the SPT-3G Receiver
journal, May 2018

  • Posada, C. M.; Ade, P. A. R.; Ahmed, Z.
  • Journal of Low Temperature Physics, Vol. 193, Issue 5-6
  • DOI: 10.1007/s10909-018-1924-1

Optical Characterization of the SPT-3G Camera
journal, May 2018


SPT-3G: A Multichroic Receiver for the South Pole Telescope
journal, July 2018

  • Anderson, A. J.; Ade, P. A. R.; Ahmed, Z.
  • Journal of Low Temperature Physics, Vol. 193, Issue 5-6
  • DOI: 10.1007/s10909-018-2007-z

Performance of Al–Mn Transition-Edge Sensor Bolometers in SPT-3G
journal, November 2019

  • Anderson, A. J.; Ade, P. A. R.; Ahmed, Z.
  • Journal of Low Temperature Physics, Vol. 199, Issue 1-2
  • DOI: 10.1007/s10909-019-02259-7

Year two instrument status of the SPT-3G cosmic microwave background receiver
conference, August 2018

  • Carter, Faustin W.; Cecil, Thomas W.; Chang, Clarence L.
  • Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX
  • DOI: 10.1117/12.2312426

Characterization and performance of the second-year SPT-3G focal plane
conference, July 2018

  • Ahmed, Zeeshan; Thakur, Ritoban B.; Bender, Amy N.
  • Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX
  • DOI: 10.1117/12.2312451

Performance of Al-Mn Transition-Edge Sensor Bolometers in SPT-3G
text, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.