DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tuning SPT-3G Transition-Edge-Sensor Electrical Properties with a Four-Layer Ti–Au–Ti–Au Thin-Film Stack

Journal Article · · Journal of Low Temperature Physics
ORCiD logo [1];  [2];  [3];  [4];  [5];  [6];  [7];  [1];  [8];  [9];  [10];  [11];  [12];  [6];  [5];  [6];  [10];  [10];  [13];  [14] more »;  [15];  [16];  [10];  [12];  [6];  [15];  [17];  [6];  [7];  [5];  [6];  [6];  [18];  [6];  [19];  [10];  [20];  [16];  [19];  [10];  [3];  [10];  [21];  [7];  [22];  [23];  [10];  [12];  [20];  [24];  [19];  [12];  [10];  [7];  [14];  [10];  [10];  [4];  [15];  [1];  [15];  [6];  [14];  [25];  [14];  [10];  [26];  [27];  [21];  [14];  [3];  [2];  [5];  [24];  [20];  [10];  [28];  [10];  [3];  [24] « less
  1. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP)
  2. Cardiff Univ. (United Kingdom)
  3. Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  5. National Inst. of Standards and Technology (NIST), Boulder, CO (United States)
  6. Univ. of California, Berkeley, CA (United States)
  7. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP)
  8. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Chicago, IL (United States)
  9. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Univ. of Chicago, IL (United States); Univ. of Chicago, IL (United States). Enrico Fermi Inst.
  10. Argonne National Lab. (ANL), Argonne, IL (United States)
  11. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Univ. of Chicago, IL (United States)
  12. McGill Univ., Montreal, QC (Canada)
  13. McGill Univ., Montreal, QC (Canada); Canadian Inst. for Advance Research, Toronto, ON (United States)
  14. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Univ. of Chicago, IL (United States)
  15. Univ. of Colorado, Boulder, CO (United States)
  16. Case Western Reserve Univ., Cleveland, OH (United States)
  17. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Illinois, Urbana, IL (United States)
  18. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States)
  19. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  20. Univ. of Illinois, Urbana, IL (United States)
  21. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  22. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Univ. of Chicago, IL (United States); Univ. of Chicago, IL (United States). Enrico Fermi Inst.
  23. Univ. of Chicago, IL (United States)
  24. Univ. of Toronto, ON (Canada)
  25. Three-Speed Logic, Inc., Vancouver, BC (Canada)
  26. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)
  27. Stanford Univ., CA (United States)
  28. Univ. of California, Berkeley, CA (United States); Univ. of California, Los Angeles, CA (United States)

We have developed superconducting Ti transition-edge sensors with Au protection layers on the top and bottom for the South Pole Telescope’s third-generation receiver (a cosmic microwave background polarimeter, due to be upgraded this austral summer of 2017/2018). The base Au layer (deposited on a thin Ti glue layer) isolates the Ti from any substrate effects; the top Au layer protects the Ti from oxidation during processing and subsequent use of the sensors. We control the transition temperature and normal resistance of the sensors by varying the sensor width and the relative thicknesses of the Ti and Au layers. The transition temperature is roughly six times more sensitive to the thickness of the base Au layer than to that of the top Au layer. The normal resistance is inversely proportional to sensor width for any given film configuration. For widths greater than five micrometers, the critical temperature is independent of width.

Research Organization:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Argonne National Laboratory (ANL), Argonne, IL (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
Sponsoring Organization:
National Science Foundation (NSF); Natural Sciences and Engineering Research Council of Canada (NSERC); USDOE Office of Science (SC), High Energy Physics (HEP)
Contributing Organization:
SPT
Grant/Contract Number:
AC02-76SF00515; PLR-1248097; PHY-1125897; GBMF 947; AC02-06CH11357; AC02-07CH11359; AST-0956135
OSTI ID:
1490488
Alternate ID(s):
OSTI ID: 1491028; OSTI ID: 1496028
Report Number(s):
FERMILAB-PUB-18-738-AE; PII: 1910
Journal Information:
Journal of Low Temperature Physics, Vol. 193, Issue 5-6; ISSN 0022-2291
Publisher:
SpringerCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

References (5)

Transition-Edge Sensors book July 2005
Superconductive properties of thin dirty superconductor–normal-metal bilayers journal February 2001
Optimization of Transition Edge Sensor Arrays for Cosmic Microwave Background Observations With the South Pole Telescope journal June 2017
Integrated performance of a frequency domain multiplexing readout in the SPT-3G receiver conference July 2016
Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements journal July 2012

Cited By (8)

Thermal Links and Microstrip Transmission Lines in SPT-3G Bolometers journal June 2018
Fabrication of Detector Arrays for the SPT-3G Receiver journal May 2018
Optical Characterization of the SPT-3G Camera journal May 2018
SPT-3G: A Multichroic Receiver for the South Pole Telescope journal July 2018
Performance of Al–Mn Transition-Edge Sensor Bolometers in SPT-3G journal November 2019
Year two instrument status of the SPT-3G cosmic microwave background receiver
  • Carter, Faustin W.; Cecil, Thomas W.; Chang, Clarence L.
  • Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX https://doi.org/10.1117/12.2312426
conference August 2018
Characterization and performance of the second-year SPT-3G focal plane
  • Ahmed, Zeeshan; Thakur, Ritoban B.; Bender, Amy N.
  • Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX https://doi.org/10.1117/12.2312451
conference July 2018
Performance of Al-Mn Transition-Edge Sensor Bolometers in SPT-3G text January 2019

Figures / Tables (3)