skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SLAC Microresonator Radio Frequency (SMuRF) Electronics for Read Out of Frequency-Division-Multiplexed Cryogenic Sensors

Abstract

Large arrays of cryogenic sensors for various imaging applications ranging across x-ray, gamma-ray, cosmic microwave background, mm/sub-mm, as well as particle detection increasingly rely on superconducting microresonators for high multiplexing factors. These microresonators take the form of microwave SQUIDs that couple to transition-edge sensors or microwave kinetic inductance detectors. In principle, such arrays can be read out with vastly scalable software-defined radio using suitable FPGAs, ADCs and DACs. In this work, we share plans and show initial results for SLAC Microresonator Radio Frequency (SMuRF) electronics, a next-generation control and readout system for superconducting microresonators. SMuRF electronics are unique in their implementation of specialized algorithms for closed-loop tone tracking, which consists of fast feedback and feedforward to each resonator’s excitation parameters based on transmission measurements. Closed-loop tone tracking enables improved system linearity, a significant increase in sensor count per readout line, and the possibility of overcoupled resonator designs for enhanced dynamic range. Low-bandwidth prototype electronics were used to demonstrate closed-loop tone tracking on twelve 300-kHz-wide microwave SQUID resonators, spaced at ~ 6 MHz with center frequencies ~ 5–6 GHz. We achieve multi-kHz tracking bandwidth and demonstrate that the noise floor of the electronics is subdominant to the noise intrinsic in themore » multiplexer.« less

Authors:
 [1];  [1];  [1];  [2];  [2];  [2];  [2];  [2];  [1];  [2];  [3];  [2];  [3];  [3];  [4];  [4];  [2];  [3];  [2];  [2] more »;  [3];  [3];  [5] « less
  1. Stanford Univ., CA (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. National Inst. of Standards and Technology (NIST), Boulder, CO (United States)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States)
  5. Santa Clara Univ., Santa Clara, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1490479
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Low Temperature Physics
Additional Journal Information:
Journal Volume: 193; Journal Issue: 3-4; Journal ID: ISSN 0022-2291
Publisher:
Plenum Press
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; Microwave SQUIDs; FPGA; Tone-tracking; TES; Multiplexing; Microresonators; MKIDs

Citation Formats

Kernasovskiy, S. A., Kuenstner, S. E., Karpel, E., Ahmed, Z., Van Winkle, D. D., Smith, S., Dusatko, J., Frisch, J. C., Chaudhuri, S., Cho, H. M., Dober, B. J., Henderson, S. W., Hilton, G. C., Hubmayr, J., Irwin, K. D., Kuo, C. L., Li, D., Mates, J. A. B., Nasr, M., Tantawi, S., Ullom, J., Vale, L., and Young, B. SLAC Microresonator Radio Frequency (SMuRF) Electronics for Read Out of Frequency-Division-Multiplexed Cryogenic Sensors. United States: N. p., 2018. Web. doi:10.1007/s10909-018-1981-5.
Kernasovskiy, S. A., Kuenstner, S. E., Karpel, E., Ahmed, Z., Van Winkle, D. D., Smith, S., Dusatko, J., Frisch, J. C., Chaudhuri, S., Cho, H. M., Dober, B. J., Henderson, S. W., Hilton, G. C., Hubmayr, J., Irwin, K. D., Kuo, C. L., Li, D., Mates, J. A. B., Nasr, M., Tantawi, S., Ullom, J., Vale, L., & Young, B. SLAC Microresonator Radio Frequency (SMuRF) Electronics for Read Out of Frequency-Division-Multiplexed Cryogenic Sensors. United States. doi:10.1007/s10909-018-1981-5.
Kernasovskiy, S. A., Kuenstner, S. E., Karpel, E., Ahmed, Z., Van Winkle, D. D., Smith, S., Dusatko, J., Frisch, J. C., Chaudhuri, S., Cho, H. M., Dober, B. J., Henderson, S. W., Hilton, G. C., Hubmayr, J., Irwin, K. D., Kuo, C. L., Li, D., Mates, J. A. B., Nasr, M., Tantawi, S., Ullom, J., Vale, L., and Young, B. Wed . "SLAC Microresonator Radio Frequency (SMuRF) Electronics for Read Out of Frequency-Division-Multiplexed Cryogenic Sensors". United States. doi:10.1007/s10909-018-1981-5. https://www.osti.gov/servlets/purl/1490479.
@article{osti_1490479,
title = {SLAC Microresonator Radio Frequency (SMuRF) Electronics for Read Out of Frequency-Division-Multiplexed Cryogenic Sensors},
author = {Kernasovskiy, S. A. and Kuenstner, S. E. and Karpel, E. and Ahmed, Z. and Van Winkle, D. D. and Smith, S. and Dusatko, J. and Frisch, J. C. and Chaudhuri, S. and Cho, H. M. and Dober, B. J. and Henderson, S. W. and Hilton, G. C. and Hubmayr, J. and Irwin, K. D. and Kuo, C. L. and Li, D. and Mates, J. A. B. and Nasr, M. and Tantawi, S. and Ullom, J. and Vale, L. and Young, B.},
abstractNote = {Large arrays of cryogenic sensors for various imaging applications ranging across x-ray, gamma-ray, cosmic microwave background, mm/sub-mm, as well as particle detection increasingly rely on superconducting microresonators for high multiplexing factors. These microresonators take the form of microwave SQUIDs that couple to transition-edge sensors or microwave kinetic inductance detectors. In principle, such arrays can be read out with vastly scalable software-defined radio using suitable FPGAs, ADCs and DACs. In this work, we share plans and show initial results for SLAC Microresonator Radio Frequency (SMuRF) electronics, a next-generation control and readout system for superconducting microresonators. SMuRF electronics are unique in their implementation of specialized algorithms for closed-loop tone tracking, which consists of fast feedback and feedforward to each resonator’s excitation parameters based on transmission measurements. Closed-loop tone tracking enables improved system linearity, a significant increase in sensor count per readout line, and the possibility of overcoupled resonator designs for enhanced dynamic range. Low-bandwidth prototype electronics were used to demonstrate closed-loop tone tracking on twelve 300-kHz-wide microwave SQUID resonators, spaced at ~ 6 MHz with center frequencies ~ 5–6 GHz. We achieve multi-kHz tracking bandwidth and demonstrate that the noise floor of the electronics is subdominant to the noise intrinsic in the multiplexer.},
doi = {10.1007/s10909-018-1981-5},
journal = {Journal of Low Temperature Physics},
number = 3-4,
volume = 193,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share: