skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Determination of the electron-lattice coupling strength of copper with ultrafast MeV electron diffraction

Abstract

Electron-lattice coupling strength governs the energy transfer between electrons and the lattice and is important for understanding the material behavior under highly non-equilibrium conditions. We report the results of employing time-resolved electron diffraction at MeV energies to directly study the electron-lattice coupling strength in 40-nm-thick polycrystalline copper excited by femtosecond optical lasers. The temporal evolution of lattice temperature at various pump fluence conditions were obtained from the measurements of the Debye-Waller decay of multiple diffraction peaks. We observed the temperature dependence of the electron-lattice relaxation time which is a result of the temperature dependence of electron heat capacity. Comparison with two-temperature model simulations reveals an electron-lattice coupling strength of (0.9 ± 0.1) × 10 17 W/m 3/K for copper.

Authors:
 [1];  [2]; ORCiD logo [1];  [1];  [1];  [3]; ORCiD logo [4]; ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. Southern Illinois Univ., Edwardsville, IL (United States). Dept. of Physics
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Rostock (Germany). Inst. of Physics
  4. Univ. of Rostock (Germany). Inst. of Physics
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Rostock (Germany)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); German Research Foundation (DFG)
OSTI Identifier:
1490446
Alternate Identifier(s):
OSTI ID: 1471442
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 89; Journal Issue: 10; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; polycrystalline material; ultrafast lasers; thermodynamic properties; electron diffraction

Citation Formats

Mo, M. Z., Becker, V., Ofori-Okai, B. K., Shen, X., Chen, Z., Witte, B., Redmer, R., Li, R. K., Dunning, M., Weathersby, S. P., Wang, X. J., and Glenzer, S. H. Determination of the electron-lattice coupling strength of copper with ultrafast MeV electron diffraction. United States: N. p., 2018. Web. doi:10.1063/1.5035368.
Mo, M. Z., Becker, V., Ofori-Okai, B. K., Shen, X., Chen, Z., Witte, B., Redmer, R., Li, R. K., Dunning, M., Weathersby, S. P., Wang, X. J., & Glenzer, S. H. Determination of the electron-lattice coupling strength of copper with ultrafast MeV electron diffraction. United States. doi:10.1063/1.5035368.
Mo, M. Z., Becker, V., Ofori-Okai, B. K., Shen, X., Chen, Z., Witte, B., Redmer, R., Li, R. K., Dunning, M., Weathersby, S. P., Wang, X. J., and Glenzer, S. H. Wed . "Determination of the electron-lattice coupling strength of copper with ultrafast MeV electron diffraction". United States. doi:10.1063/1.5035368. https://www.osti.gov/servlets/purl/1490446.
@article{osti_1490446,
title = {Determination of the electron-lattice coupling strength of copper with ultrafast MeV electron diffraction},
author = {Mo, M. Z. and Becker, V. and Ofori-Okai, B. K. and Shen, X. and Chen, Z. and Witte, B. and Redmer, R. and Li, R. K. and Dunning, M. and Weathersby, S. P. and Wang, X. J. and Glenzer, S. H.},
abstractNote = {Electron-lattice coupling strength governs the energy transfer between electrons and the lattice and is important for understanding the material behavior under highly non-equilibrium conditions. We report the results of employing time-resolved electron diffraction at MeV energies to directly study the electron-lattice coupling strength in 40-nm-thick polycrystalline copper excited by femtosecond optical lasers. The temporal evolution of lattice temperature at various pump fluence conditions were obtained from the measurements of the Debye-Waller decay of multiple diffraction peaks. We observed the temperature dependence of the electron-lattice relaxation time which is a result of the temperature dependence of electron heat capacity. Comparison with two-temperature model simulations reveals an electron-lattice coupling strength of (0.9 ± 0.1) × 1017 W/m3/K for copper.},
doi = {10.1063/1.5035368},
journal = {Review of Scientific Instruments},
number = 10,
volume = 89,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share: