skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Liquid Structure of Shock-Compressed Hydrocarbons at Megabar Pressures

Abstract

We present here results for the ionic structure in hydrocarbons (polystyrene, polyethylene) that were shock compressed to pressures of up to 190 GPa, inducing rapid melting of the samples. The structure of the resulting liquid is then probed using in situ diffraction by an x-ray free electron laser beam, demonstrating the capability to obtain reliable diffraction data in a single shot, even for low-Z samples without long range order. The data agree well with ab initio simulations, validating the ability of such approaches to model mixed samples in states where complex interparticle bonds remain, and showing that simpler models are not necessarily valid. While the results clearly exclude the possibility of complete carbon-hydrogen demixing at the conditions probed, they also, in contrast to previous predictions, indicate that diffraction is not always a sufficient diagnostic for this phenomenon.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [6];  [6];  [8];  [6];  [6];  [9];  [6];  [10];  [6];  [11];  [3];  [4];  [5] more »;  [4];  [6];  [6];  [4] « less
  1. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Osaka Univ., Suita (Japan). Open and Transdisciplinary Research Inst.
  2. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  4. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); TU Dresden (Germany)
  5. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  7. TU Darmstadt (Germany); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  8. Univ. of Warwick, Coventry (United Kingdom). Centre for Fusion, Space and Astrophysics. Dept. of Physics
  9. SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Michigan, Ann Arbor, MI (United States)
  10. SLAC National Accelerator Lab., Menlo Park, CA (United States); European XFEL GmbH, Schenefeld (Germany)
  11. GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Osaka Univ., Suita (Japan)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Fusion Energy Sciences (FES); LLNL Laboratory Directed Research and Development (LDRD) Program; Helmholtz Association (Germany); German Federal Ministry of Education and Research (BMBF); Japan Society for the Promotion of Science (JSPS)
OSTI Identifier:
1490403
Alternate Identifier(s):
OSTI ID: 1486909
Grant/Contract Number:  
AC02-76SF00515; AC52-07NA27344; SC0018298; VH-NG-1141; 16K17846; 05P15RDFA1
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 121; Journal Issue: 24; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; high-energy-density plasmas; plasma production & heating by shock waves & compression; shock waves; carbon-based materials; liquids; density functional theory; X-ray diffraction

Citation Formats

Hartley, N. J., Vorberger, J., Döppner, T., Cowan, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Pak, A., Rohatsch, K., Saunders, A. M., Schuster, A. K., Sun, P., van Driel, T., and Kraus, D. Liquid Structure of Shock-Compressed Hydrocarbons at Megabar Pressures. United States: N. p., 2018. Web. doi:10.1103/physrevlett.121.245501.
Hartley, N. J., Vorberger, J., Döppner, T., Cowan, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Pak, A., Rohatsch, K., Saunders, A. M., Schuster, A. K., Sun, P., van Driel, T., & Kraus, D. Liquid Structure of Shock-Compressed Hydrocarbons at Megabar Pressures. United States. doi:10.1103/physrevlett.121.245501.
Hartley, N. J., Vorberger, J., Döppner, T., Cowan, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Pak, A., Rohatsch, K., Saunders, A. M., Schuster, A. K., Sun, P., van Driel, T., and Kraus, D. Fri . "Liquid Structure of Shock-Compressed Hydrocarbons at Megabar Pressures". United States. doi:10.1103/physrevlett.121.245501. https://www.osti.gov/servlets/purl/1490403.
@article{osti_1490403,
title = {Liquid Structure of Shock-Compressed Hydrocarbons at Megabar Pressures},
author = {Hartley, N. J. and Vorberger, J. and Döppner, T. and Cowan, T. and Falcone, R. W. and Fletcher, L. B. and Frydrych, S. and Galtier, E. and Gamboa, E. J. and Gericke, D. O. and Glenzer, S. H. and Granados, E. and MacDonald, M. J. and MacKinnon, A. J. and McBride, E. E. and Nam, I. and Neumayer, P. and Pak, A. and Rohatsch, K. and Saunders, A. M. and Schuster, A. K. and Sun, P. and van Driel, T. and Kraus, D.},
abstractNote = {We present here results for the ionic structure in hydrocarbons (polystyrene, polyethylene) that were shock compressed to pressures of up to 190 GPa, inducing rapid melting of the samples. The structure of the resulting liquid is then probed using in situ diffraction by an x-ray free electron laser beam, demonstrating the capability to obtain reliable diffraction data in a single shot, even for low-Z samples without long range order. The data agree well with ab initio simulations, validating the ability of such approaches to model mixed samples in states where complex interparticle bonds remain, and showing that simpler models are not necessarily valid. While the results clearly exclude the possibility of complete carbon-hydrogen demixing at the conditions probed, they also, in contrast to previous predictions, indicate that diffraction is not always a sufficient diagnostic for this phenomenon.},
doi = {10.1103/physrevlett.121.245501},
journal = {Physical Review Letters},
number = 24,
volume = 121,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline
journal, November 2013

  • Petitgirard, Sylvain; Salamat, Ashkan; Beck, Pierre
  • Journal of Synchrotron Radiation, Vol. 21, Issue 1
  • DOI: 10.1107/S1600577513027434

Projector augmented-wave method
journal, December 1994


X-ray scattering as a probe for warm dense mixtures and high-pressure miscibility
journal, March 2011


Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
journal, March 2016

  • Kraus, D.; Ravasio, A.; Gauthier, M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10970

Ultrabright X-ray laser scattering for dynamic warm dense matter physics
journal, March 2015


High pressures generated by laser driven shocks: applications to planetary physics
journal, November 2004


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Uranus evolution models with simple thermal boundary layers
journal, September 2016


Spallation as a dominant source of pusher-fuel and hot-spot mix in inertial confinement fusion capsules
journal, February 2016


Predictions on the core mass of Jupiter and of giant planets in general
journal, March 2011


Hydrogen-helium demixing from first principles: From diamond anvil cells to planetary interiors
journal, May 2013


Evidence for a Phase Transition in Silicate Melt at Extreme Pressure and Temperature Conditions
journal, February 2012


DIOPTAS : a program for reduction of two-dimensional X-ray diffraction data and data exploration
journal, May 2015


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Ion structure in dense plasmas: MSA versus HNC
journal, May 2009


Targets for high repetition rate laser facilities: needs, challenges and perspectives
journal, January 2017

  • Prencipe, I.; Fuchs, J.; Pascarelli, S.
  • High Power Laser Science and Engineering, Vol. 5
  • DOI: 10.1017/hpl.2017.18

Melting Curve and Liquid Structure of Nitrogen Probed by X-ray Diffraction to 120 GPa
journal, December 2017


The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scatteringa)
journal, May 2015

  • Kraus, D.; Vorberger, J.; Helfrich, J.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4920943

Lindhard Dielectric Function in the Relaxation-Time Approximation
journal, March 1970


High-pressure crystalline polyethylene studied by x-ray diffraction and ab initio simulations
journal, May 2007


Ab initio approach to model x-ray diffraction in warm dense matter
journal, March 2015


Analysis of Thomson Scattering from Nonequilibrium Plasmas
journal, October 2011


Ab Initio Equation of State Data for Hydrogen, Helium, and Water and the Internal Structure of Jupiter
journal, August 2008

  • Nettelmann, Nadine; Holst, Bastian; Kietzmann, André
  • The Astrophysical Journal, Vol. 683, Issue 2
  • DOI: 10.1086/589806

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Observations of strong ion-ion correlations in dense plasmas
journal, May 2014

  • Ma, T.; Fletcher, L.; Pak, A.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4872161

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


The direct measurement of ablation pressure driven by 351-nm laser radiation
journal, October 2011

  • Fratanduono, D. E.; Boehly, T. R.; Celliers, P. M.
  • Journal of Applied Physics, Vol. 110, Issue 7
  • DOI: 10.1063/1.3646554

Probing the Complex Ion Structure in Liquid Carbon at 100 GPa
journal, December 2013


Ab Initio Calculation of the Miscibility Diagram for Hydrogen-Helium Mixtures
journal, March 2018


Experimental evidence for superionic water ice using shock compression
journal, February 2018


Probing matter at Gbar pressures at the NIF
journal, March 2014


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar
journal, January 2012

  • Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Prakapenka, Vitali B.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2160

Properties of hydrogen, helium, and silicon dioxide mixtures in giant planet interiors
journal, April 2017

  • Soubiran, François; Militzer, Burkhard; Driver, Kevin P.
  • Physics of Plasmas, Vol. 24, Issue 4
  • DOI: 10.1063/1.4978618

Static compression of iron to 300 GPa and Fe 0.8 Ni 0.2 alloy to 260 GPa: Implications for composition of the core
journal, January 1990


The melting curve of Ni to 1 Mbar
journal, December 2014


Interior Structure of Neptune: Comparison with Uranus
journal, August 1991


Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions
journal, August 2017


Ion structure in warm dense matter: Benchmarking solutions of hypernetted-chain equations by first-principle simulations
journal, January 2009


Direct-drive inertial confinement fusion: A review
journal, November 2015

  • Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934714

X-ray Thomson scattering in high energy density plasmas
journal, December 2009


High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion
journal, May 2018

  • Kraus, D.; Hartley, N. J.; Frydrych, S.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5017908

Shock Compression of Quartz to 1.6 TPa: Redefining a Pressure Standard
journal, November 2009


Thermal Properties of the Inhomogeneous Electron Gas
journal, March 1965


Direct Observation of Melting in Shock-Compressed Bismuth With Femtosecond X-ray Diffraction
journal, August 2015


Constant Temperature Molecular Dynamics Methods
journal, January 1991

  • Nosé, Shuichi
  • Progress of Theoretical Physics Supplement, Vol. 103
  • DOI: 10.1143/PTPS.103.1

    Works referencing / citing this record:

    Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa
    journal, March 2019


    High Pressure Hydrocarbons Revisited: From van der Waals Compounds to Diamond
    journal, May 2019


    Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa
    journal, March 2019


    High Pressure Hydrocarbons Revisited: From van der Waals Compounds to Diamond
    journal, May 2019


    Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa
    text, January 2019

    • Hartley, N. J.; Brown, S.; Cowan, T. E.
    • GSI Helmholtzzentrum fuer Schwerionenforschung, GSI, Darmstadt
    • DOI: 10.15120/gsi-2019-00575