skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on December 14, 2019

Title: Liquid Structure of Shock-Compressed Hydrocarbons at Megabar Pressures

Abstract

We present here results for the ionic structure in hydrocarbons (polystyrene, polyethylene) that were shock compressed to pressures of up to 190 GPa, inducing rapid melting of the samples. The structure of the resulting liquid is then probed using in situ diffraction by an x-ray free electron laser beam, demonstrating the capability to obtain reliable diffraction data in a single shot, even for low-Z samples without long range order. The data agree well with ab initio simulations, validating the ability of such approaches to model mixed samples in states where complex interparticle bonds remain, and showing that simpler models are not necessarily valid. While the results clearly exclude the possibility of complete carbon-hydrogen demixing at the conditions probed, they also, in contrast to previous predictions, indicate that diffraction is not always a sufficient diagnostic for this phenomenon.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [6];  [6];  [8];  [6];  [6];  [9];  [6];  [10];  [6];  [11];  [3];  [4];  [5] more »;  [4];  [6];  [6];  [4] « less
  1. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Osaka Univ., Suita (Japan). Open and Transdisciplinary Research Inst.
  2. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  4. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); TU Dresden (Germany)
  5. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  7. TU Darmstadt (Germany); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  8. Univ. of Warwick, Coventry (United Kingdom). Centre for Fusion, Space and Astrophysics. Dept. of Physics
  9. SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Michigan, Ann Arbor, MI (United States)
  10. SLAC National Accelerator Lab., Menlo Park, CA (United States); European XFEL GmbH, Schenefeld (Germany)
  11. GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Osaka Univ., Suita (Japan)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24); LLNL Laboratory Directed Research and Development (LDRD) Program; Helmholtz Association (Germany); German Federal Ministry of Education and Research (BMBF); Japan Society for the Promotion of Science (JSPS)
OSTI Identifier:
1490403
Alternate Identifier(s):
OSTI ID: 1486909
Grant/Contract Number:  
AC02-76SF00515; AC52-07NA27344; SC0018298; VH-NG-1141; 16K17846; 05P15RDFA1
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 121; Journal Issue: 24; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; high-energy-density plasmas; plasma production & heating by shock waves & compression; shock waves; carbon-based materials; liquids; density functional theory; X-ray diffraction

Citation Formats

Hartley, N. J., Vorberger, J., Döppner, T., Cowan, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Pak, A., Rohatsch, K., Saunders, A. M., Schuster, A. K., Sun, P., van Driel, T., and Kraus, D. Liquid Structure of Shock-Compressed Hydrocarbons at Megabar Pressures. United States: N. p., 2018. Web. doi:10.1103/physrevlett.121.245501.
Hartley, N. J., Vorberger, J., Döppner, T., Cowan, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Pak, A., Rohatsch, K., Saunders, A. M., Schuster, A. K., Sun, P., van Driel, T., & Kraus, D. Liquid Structure of Shock-Compressed Hydrocarbons at Megabar Pressures. United States. doi:10.1103/physrevlett.121.245501.
Hartley, N. J., Vorberger, J., Döppner, T., Cowan, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Pak, A., Rohatsch, K., Saunders, A. M., Schuster, A. K., Sun, P., van Driel, T., and Kraus, D. Fri . "Liquid Structure of Shock-Compressed Hydrocarbons at Megabar Pressures". United States. doi:10.1103/physrevlett.121.245501.
@article{osti_1490403,
title = {Liquid Structure of Shock-Compressed Hydrocarbons at Megabar Pressures},
author = {Hartley, N. J. and Vorberger, J. and Döppner, T. and Cowan, T. and Falcone, R. W. and Fletcher, L. B. and Frydrych, S. and Galtier, E. and Gamboa, E. J. and Gericke, D. O. and Glenzer, S. H. and Granados, E. and MacDonald, M. J. and MacKinnon, A. J. and McBride, E. E. and Nam, I. and Neumayer, P. and Pak, A. and Rohatsch, K. and Saunders, A. M. and Schuster, A. K. and Sun, P. and van Driel, T. and Kraus, D.},
abstractNote = {We present here results for the ionic structure in hydrocarbons (polystyrene, polyethylene) that were shock compressed to pressures of up to 190 GPa, inducing rapid melting of the samples. The structure of the resulting liquid is then probed using in situ diffraction by an x-ray free electron laser beam, demonstrating the capability to obtain reliable diffraction data in a single shot, even for low-Z samples without long range order. The data agree well with ab initio simulations, validating the ability of such approaches to model mixed samples in states where complex interparticle bonds remain, and showing that simpler models are not necessarily valid. While the results clearly exclude the possibility of complete carbon-hydrogen demixing at the conditions probed, they also, in contrast to previous predictions, indicate that diffraction is not always a sufficient diagnostic for this phenomenon.},
doi = {10.1103/physrevlett.121.245501},
journal = {Physical Review Letters},
number = 24,
volume = 121,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on December 14, 2019
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994