skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reversible Hydrogen Uptake/Release over a Sodium Phenoxide-Cyclohexanolate Pair

Abstract

Hydrogen uptake and release in arene–cycloalkane pairs provide an attractive opportunity for on-board and off-board hydrogen storage. However, the efficiency of arene–cycloalkane pairs currently is limited by unfavorable thermodynamics for hydrogen release. It is shown here that the thermodynamics can be optimized by replacement of H in the -OH group of cyclohexanol and phenol with alkali or alkaline earth metals. The enthalpy change upon dehydrogenation decreases substantially, which correlates with the delocalization of the oxygen electron to the benzene ring in phenoxides. Theoretical calculations reveal that replacement of H with a metal leads to a reduction of the HOMO–LUMO energy gap and elongation of the C-H bond in the α site in cyclohexanolate, which indicates that the cyclohexanol is activated upon metal substitution. The experimental results demonstrate that sodium phenoxide–cyclohexanolate, an air- and water-stable pair, can desorb hydrogen at ca. 413 K and 373 K in the solid form and in an aqueous solution, respectively. Hydrogenation, on the other hand, is accomplished at temperatures as low as 303 K.

Authors:
 [1];  [1];  [2];  [1];  [3];  [3]; ORCiD logo [4]
  1. Chinese Academy of Sciences (CAS), Dalian (China). Dalian Inst. of Chemical Physics
  2. Xiamen Univ., Xiamen (China). Fujian Provincial Key Lab. of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  4. Chinese Academy of Sciences (CAS), Dalian (China). Dalian Inst. of Chemical Physics, State Key Lab.of Catalysis; Xiamen Univ., Fujian (China). Collaborative Innovation Centre of Chemistry for Energy Materials
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Office (EE-3F); National Natural Science Foundation of China (NNSFC)
OSTI Identifier:
1490385
Report Number(s):
PNNL-SA-132154
Journal ID: ISSN 1433-7851
Grant/Contract Number:  
AC0576RL01830; 21875246, 51671178, 51472237; 21773193; 2016YFE0118300; 20720160031
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 58; Journal Issue: 10; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; hydrogen storage materials; metalation; organic hydrides; thermodynamic modification

Citation Formats

Yu, Yang, He, Teng, Wu, Anan, Pei, Qijun, Karkamkar, Abhijeet, Autrey, Tom, and Chen, Ping. Reversible Hydrogen Uptake/Release over a Sodium Phenoxide-Cyclohexanolate Pair. United States: N. p., 2018. Web. doi:10.1002/anie.201810945.
Yu, Yang, He, Teng, Wu, Anan, Pei, Qijun, Karkamkar, Abhijeet, Autrey, Tom, & Chen, Ping. Reversible Hydrogen Uptake/Release over a Sodium Phenoxide-Cyclohexanolate Pair. United States. doi:10.1002/anie.201810945.
Yu, Yang, He, Teng, Wu, Anan, Pei, Qijun, Karkamkar, Abhijeet, Autrey, Tom, and Chen, Ping. Sun . "Reversible Hydrogen Uptake/Release over a Sodium Phenoxide-Cyclohexanolate Pair". United States. doi:10.1002/anie.201810945. https://www.osti.gov/servlets/purl/1490385.
@article{osti_1490385,
title = {Reversible Hydrogen Uptake/Release over a Sodium Phenoxide-Cyclohexanolate Pair},
author = {Yu, Yang and He, Teng and Wu, Anan and Pei, Qijun and Karkamkar, Abhijeet and Autrey, Tom and Chen, Ping},
abstractNote = {Hydrogen uptake and release in arene–cycloalkane pairs provide an attractive opportunity for on-board and off-board hydrogen storage. However, the efficiency of arene–cycloalkane pairs currently is limited by unfavorable thermodynamics for hydrogen release. It is shown here that the thermodynamics can be optimized by replacement of H in the -OH group of cyclohexanol and phenol with alkali or alkaline earth metals. The enthalpy change upon dehydrogenation decreases substantially, which correlates with the delocalization of the oxygen electron to the benzene ring in phenoxides. Theoretical calculations reveal that replacement of H with a metal leads to a reduction of the HOMO–LUMO energy gap and elongation of the C-H bond in the α site in cyclohexanolate, which indicates that the cyclohexanol is activated upon metal substitution. The experimental results demonstrate that sodium phenoxide–cyclohexanolate, an air- and water-stable pair, can desorb hydrogen at ca. 413 K and 373 K in the solid form and in an aqueous solution, respectively. Hydrogenation, on the other hand, is accomplished at temperatures as low as 303 K.},
doi = {10.1002/anie.201810945},
journal = {Angewandte Chemie (International Edition)},
number = 10,
volume = 58,
place = {United States},
year = {2018},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Temperature controlled three-stage catalytic dehydrogenation and cycle performance of perhydro-9-ethylcarbazole
journal, September 2012


Hydrogen Storage in Metal–Organic Frameworks
journal, September 2011

  • Suh, Myunghyun Paik; Park, Hye Jeong; Prasad, Thazhe Kootteri
  • Chemical Reviews, Vol. 112, Issue 2, p. 782-835
  • DOI: 10.1021/cr200274s

Hydrogen delivery through liquid organic hydrides: Considerations for a potential technology
journal, February 2012


Metal-Free Dehydrogenation of N-Heterocycles by Ternary h -BCN Nanosheets with Visible Light
journal, March 2018

  • Zheng, Meifang; Shi, Jiale; Yuan, Tao
  • Angewandte Chemie International Edition, Vol. 57, Issue 19
  • DOI: 10.1002/anie.201800319

The effect of substitution on the utility of piperidines and octahydroindoles for reversible hydrogen storage
journal, January 2008

  • Cui, Yi; Kwok, Samantha; Bucholtz, Andrew
  • New Journal of Chemistry, Vol. 32, Issue 6
  • DOI: 10.1039/b718209k

Complex Hydrides for Hydrogen Storage
journal, October 2007

  • Orimo, Shin-ichi; Nakamori, Yuko; Eliseo, Jennifer R.
  • Chemical Reviews, Vol. 107, Issue 10
  • DOI: 10.1021/cr0501846

Hybrid Catalysis Enabling Room-Temperature Hydrogen Gas Release from N -Heterocycles and Tetrahydronaphthalenes
journal, February 2017

  • Kato, Shota; Saga, Yutaka; Kojima, Masahiro
  • Journal of the American Chemical Society, Vol. 139, Issue 6
  • DOI: 10.1021/jacs.7b00253

A survey of Hammett substituent constants and resonance and field parameters
journal, March 1991

  • Hansch, Corwin.; Leo, A.; Taft, R. W.
  • Chemical Reviews, Vol. 91, Issue 2
  • DOI: 10.1021/cr00002a004

High capacity hydrogenstorage materials: attributes for automotive applications and techniques for materials discovery
journal, January 2010

  • Yang, Jun; Sudik, Andrea; Wolverton, Christopher
  • Chem. Soc. Rev., Vol. 39, Issue 2
  • DOI: 10.1039/B802882F

Metal hydrazinoborane LiN2H3BH3 and LiN2H3BH3·2N2H4BH3: crystal structures and high-extent dehydrogenation
journal, January 2012

  • Wu, Hui; Zhou, Wei; Pinkerton, Frederick E.
  • Energy & Environmental Science, Vol. 5, Issue 6
  • DOI: 10.1039/c2ee21508j

A thermodynamic and kinetic study of the heterolytic activation of hydrogen by frustrated borane–amine Lewis pairs
journal, January 2013

  • Karkamkar, Abhi; Parab, Kshitij; Camaioni, Donald M.
  • Dalton Trans., Vol. 42, Issue 3
  • DOI: 10.1039/C2DT31628E

A Molecular Iron Catalyst for the Acceptorless Dehydrogenation and Hydrogenation of N-Heterocycles
journal, June 2014

  • Chakraborty, Sumit; Brennessel, William W.; Jones, William D.
  • Journal of the American Chemical Society, Vol. 136, Issue 24
  • DOI: 10.1021/ja504523b

Ironing Out Hydrogen Storage
journal, September 2011


Acceptorless Dehydrogenation of Nitrogen Heterocycles with a Versatile Iridium Catalyst
journal, May 2013

  • Wu, Jianjun; Talwar, Dinesh; Johnston, Steven
  • Angewandte Chemie, Vol. 125, Issue 27
  • DOI: 10.1002/ange.201300292

Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage
journal, June 2015

  • Li, Lu; Mu, Xiaoyue; Liu, Wenbo
  • Journal of the American Chemical Society, Vol. 137, Issue 24
  • DOI: 10.1021/jacs.5b03505

Chemische und physikalische Lösungen für die Speicherung von Wasserstoff
journal, August 2009

  • Eberle, Ulrich; Felderhoff, Michael; Schüth, Ferdi
  • Angewandte Chemie, Vol. 121, Issue 36
  • DOI: 10.1002/ange.200806293

Lithiated Primary Amine-A New Material for Hydrogen Storage
journal, April 2014

  • Chen, Juner; Wu, Hui; Wu, Guotao
  • Chemistry - A European Journal, Vol. 20, Issue 22
  • DOI: 10.1002/chem.201402543

Dehydrogenation of N-ethyl perhydrocarbazole catalyzed by PCP pincer iridium complexes: Evaluation of a homogenous hydrogen storage system
journal, August 2009


Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage
journal, January 2015

  • Zhu, Qi-Long; Xu, Qiang
  • Energy & Environmental Science, Vol. 8, Issue 2
  • DOI: 10.1039/C4EE03690E

Metal-Free Dehydrogenation of N-Heterocycles by Ternary h -BCN Nanosheets with Visible Light
journal, March 2018


Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy
journal, December 2016


Dendrimer-Stabilized Metal Nanoparticles as Efficient Catalysts for Reversible Dehydrogenation/Hydrogenation of N-Heterocycles
journal, November 2017

  • Deraedt, Christophe; Ye, Rong; Ralston, Walter T.
  • Journal of the American Chemical Society, Vol. 139, Issue 49
  • DOI: 10.1021/jacs.7b10768

Acceptorless Dehydrogenation of N-Heterocycles by Merging Visible-Light Photoredox Catalysis and Cobalt Catalysis
journal, February 2017

  • He, Ke-Han; Tan, Fang-Fang; Zhou, Chao-Zheng
  • Angewandte Chemie, Vol. 129, Issue 11
  • DOI: 10.1002/ange.201612486

Interaction of hydrogen with metal nitrides and imides
journal, November 2002

  • Chen, Ping; Xiong, Zhitao; Luo, Jizhong
  • Nature, Vol. 420, Issue 6913, p. 302-304
  • DOI: 10.1038/nature01210

Acceptorless Dehydrogenation of Nitrogen Heterocycles with a Versatile Iridium Catalyst
journal, May 2013

  • Wu, Jianjun; Talwar, Dinesh; Johnston, Steven
  • Angewandte Chemie International Edition, Vol. 52, Issue 27
  • DOI: 10.1002/anie.201300292

Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials
journal, May 1997


Catalytic condensation for the formation of polycyclic heteroaromatic compounds
journal, May 2018


Hydrogen-storage materials for mobile applications
journal, November 2001

  • Schlapbach, Louis; Züttel, Andreas
  • Nature, Vol. 414, Issue 6861
  • DOI: 10.1038/35104634

Electrochemical Acceptorless Dehydrogenation of N-Heterocycles Utilizing TEMPO as Organo-Electrocatalyst
journal, January 2018


Photokatalyse ermöglicht die akzeptorfreie Dehydrierung von benzanellierten gesättigten Ringen bei Raumtemperatur
journal, May 2017


Hydrogen Storage in Microporous Metal-Organic Frameworks
journal, May 2003

  • Rosi, Nathaniel L.; Eckert, Juergen; Eddaoudi, Mohamed
  • Science, Vol. 300, Issue 5622, p. 1127-1129
  • DOI: 10.1126/science.1083440

Chemical utilization of hydrogen from fluctuating energy sources – Catalytic transfer hydrogenation from charged Liquid Organic Hydrogen Carrier systems
journal, January 2016

  • Geburtig, Denise; Preuster, Patrick; Bösmann, Andreas
  • International Journal of Hydrogen Energy, Vol. 41, Issue 2
  • DOI: 10.1016/j.ijhydene.2015.10.013

Chemical and Physical Solutions for Hydrogen Storage
journal, August 2009

  • Eberle, Ulrich; Felderhoff, Michael; Schüth, Ferdi
  • Angewandte Chemie International Edition, Vol. 48, Issue 36
  • DOI: 10.1002/anie.200806293

Hydrogen carriers
journal, October 2016


Photocatalysis Enabling Acceptorless Dehydrogenation of Benzofused Saturated Rings at Room Temperature
journal, May 2017

  • Yin, Qin; Oestreich, Martin
  • Angewandte Chemie International Edition, Vol. 56, Issue 27
  • DOI: 10.1002/anie.201703536

Hydrogen storage using a hot pressure swing reactor
journal, January 2017

  • Jorschick, H.; Preuster, P.; Dürr, S.
  • Energy & Environmental Science, Vol. 10, Issue 7
  • DOI: 10.1039/C7EE00476A

Homogeneous Catalytic System for Reversible Dehydrogenation−Hydrogenation Reactions of Nitrogen Heterocycles with Reversible Interconversion of Catalytic Species
journal, June 2009

  • Yamaguchi, Ryohei; Ikeda, Chikako; Takahashi, Yoshinori
  • Journal of the American Chemical Society, Vol. 131, Issue 24
  • DOI: 10.1021/ja9022623

Energy storage in residential and commercial buildings via Liquid Organic Hydrogen Carriers (LOHC)
journal, January 2012

  • Teichmann, Daniel; Stark, Katharina; Müller, Karsten
  • Energy & Environmental Science, Vol. 5, Issue 10
  • DOI: 10.1039/c2ee22070a

Chemical hydrides: A solution to high capacity hydrogen storage and supply
journal, January 2008


Hydrogen storage in liquid organic heterocycles
journal, January 2008

  • Crabtree, Robert H.
  • Energy & Environmental Science, Vol. 1, Issue 1
  • DOI: 10.1039/b805644g

The X1s Method for Accurate Bond Dissociation Energies
journal, July 2010


High-capacity hydrogen storage in lithium and sodium amidoboranes
journal, December 2007

  • Xiong, Zhitao; Yong, Chaw Keong; Wu, Guotao
  • Nature Materials, Vol. 7, Issue 2
  • DOI: 10.1038/nmat2081

Acceptorless Dehydrogenation of N-Heterocycles by Merging Visible-Light Photoredox Catalysis and Cobalt Catalysis
journal, February 2017

  • He, Ke-Han; Tan, Fang-Fang; Zhou, Chao-Zheng
  • Angewandte Chemie International Edition, Vol. 56, Issue 11
  • DOI: 10.1002/anie.201612486

    Works referencing / citing this record:

    A Precious Catalyst: Rhodium-Catalyzed Formic Acid Dehydrogenation in Water: A Precious Catalyst: Rhodium-Catalyzed Formic Acid Dehydrogenation in Water
    journal, April 2019

    • Fink, Cornel; Laurenczy, Gábor
    • European Journal of Inorganic Chemistry, Vol. 2019, Issue 18
    • DOI: 10.1002/ejic.201900344

    A Precious Catalyst: Rhodium-Catalyzed Formic Acid Dehydrogenation in Water: A Precious Catalyst: Rhodium-Catalyzed Formic Acid Dehydrogenation in Water
    journal, April 2019

    • Fink, Cornel; Laurenczy, Gábor
    • European Journal of Inorganic Chemistry, Vol. 2019, Issue 18
    • DOI: 10.1002/ejic.201900344