skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry

Abstract

The confident identification of metabolites and xenobiotics in biological and environmental studies is an analytical challenge due to their immense dynamic range, vast chemical space and structural diversity. Ion mobility spectrometry (IMS) is widely used for small molecule analyses since it can separate isomeric species and be easily coupled with front end separations and mass spectrometry for multidimensional characterizations. However, to date IMS metabolomic and exposomic studies have been limited by an inadequate number of accurate collision cross section (CCS) values for small molecules, causing features to be detected but not confidently identified. In this work, we utilized drift tube IMS (DTIMS) to directly measure CCS values for over 450 small molecules including primary metabolites, secondary metabolites and xenobiotics. Since DTIMS measurements do not need calibrates, they avoid calibration errors which can cause CCS accuracy problems and difficulties identifying structurally similar molecules. Furthermore, all measurements were performed in triplicate in both positive and negative polarities with nitrogen gas and seven different electric fields, so that relative standard deviations (RSD) could be assessed for each molecule and structural differences studied. The primary metabolites selected for the database are from key metabolism pathways such as glycolysis, the pentose phosphate pathway, and themore » tricarboxylic acid (TCA) cycle, while the secondary metabolites consist of classes such as terpenes and flavonoids, and the xenobiotics represent a range of molecules from antibiotics to polycyclic aromatic hydrocarbons. Different CCS trends were observed for several of the diverse small molecule classes, allowing insight in their separations and a possible why of classifying unknowns. This CCS database and structural information are freely available for download at http://panomics.pnnl.gov/metabolites/ with new molecules being added monthly.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1490324
Report Number(s):
PNNL-SA-126802
Journal ID: ISSN 2041-6520; CSHCBM
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Chemical Science
Additional Journal Information:
Journal Volume: 8; Journal Issue: 11; Journal ID: ISSN 2041-6520
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Zheng, Xueyun, Aly, Noor A., Zhou, Yuxuan, Dupuis, Kevin T., Bilbao, Aivett, Paurus, Vanessa  L., Orton, Daniel J., Wilson, Ryan, Payne, Samuel H., Smith, Richard D., and Baker, Erin S. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. United States: N. p., 2017. Web. doi:10.1039/C7SC03464D.
Zheng, Xueyun, Aly, Noor A., Zhou, Yuxuan, Dupuis, Kevin T., Bilbao, Aivett, Paurus, Vanessa  L., Orton, Daniel J., Wilson, Ryan, Payne, Samuel H., Smith, Richard D., & Baker, Erin S. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. United States. doi:10.1039/C7SC03464D.
Zheng, Xueyun, Aly, Noor A., Zhou, Yuxuan, Dupuis, Kevin T., Bilbao, Aivett, Paurus, Vanessa  L., Orton, Daniel J., Wilson, Ryan, Payne, Samuel H., Smith, Richard D., and Baker, Erin S. Wed . "A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry". United States. doi:10.1039/C7SC03464D. https://www.osti.gov/servlets/purl/1490324.
@article{osti_1490324,
title = {A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry},
author = {Zheng, Xueyun and Aly, Noor A. and Zhou, Yuxuan and Dupuis, Kevin T. and Bilbao, Aivett and Paurus, Vanessa  L. and Orton, Daniel J. and Wilson, Ryan and Payne, Samuel H. and Smith, Richard D. and Baker, Erin S.},
abstractNote = {The confident identification of metabolites and xenobiotics in biological and environmental studies is an analytical challenge due to their immense dynamic range, vast chemical space and structural diversity. Ion mobility spectrometry (IMS) is widely used for small molecule analyses since it can separate isomeric species and be easily coupled with front end separations and mass spectrometry for multidimensional characterizations. However, to date IMS metabolomic and exposomic studies have been limited by an inadequate number of accurate collision cross section (CCS) values for small molecules, causing features to be detected but not confidently identified. In this work, we utilized drift tube IMS (DTIMS) to directly measure CCS values for over 450 small molecules including primary metabolites, secondary metabolites and xenobiotics. Since DTIMS measurements do not need calibrates, they avoid calibration errors which can cause CCS accuracy problems and difficulties identifying structurally similar molecules. Furthermore, all measurements were performed in triplicate in both positive and negative polarities with nitrogen gas and seven different electric fields, so that relative standard deviations (RSD) could be assessed for each molecule and structural differences studied. The primary metabolites selected for the database are from key metabolism pathways such as glycolysis, the pentose phosphate pathway, and the tricarboxylic acid (TCA) cycle, while the secondary metabolites consist of classes such as terpenes and flavonoids, and the xenobiotics represent a range of molecules from antibiotics to polycyclic aromatic hydrocarbons. Different CCS trends were observed for several of the diverse small molecule classes, allowing insight in their separations and a possible why of classifying unknowns. This CCS database and structural information are freely available for download at http://panomics.pnnl.gov/metabolites/ with new molecules being added monthly.},
doi = {10.1039/C7SC03464D},
journal = {Chemical Science},
number = 11,
volume = 8,
place = {United States},
year = {2017},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: The workflow for creating the small molecule database. All standards were analyzed separately or in small mixtures (<10 molecules). The standards were subjected to 7 electric fields in the DTIMS cell to calculate CCS values and all analyses were performed in triplicate in both positive and negative modemore » to evaluate precision and polarity differences.« less

Save / Share:

Works referenced in this record:

Plant Metabolites and Nutritional Quality of Vegetables
journal, May 2008


Ion Mobility Collision Cross Section Compendium
journal, December 2016


Applications of ion-mobility mass spectrometry for lipid analysis
journal, April 2015

  • Paglia, Giuseppe; Kliman, Michal; Claude, Emmanuelle
  • Analytical and Bioanalytical Chemistry, Vol. 407, Issue 17
  • DOI: 10.1007/s00216-015-8664-8

A Database of Transition-Metal-Coordinated Peptide Cross-Sections: Selective Interaction with Specific Amino Acid Residues
journal, March 2017

  • Dilger, Jonathan M.; Glover, Matthew S.; Clemmer, David E.
  • Journal of The American Society for Mass Spectrometry, Vol. 28, Issue 7
  • DOI: 10.1007/s13361-016-1592-9

SPE-IMS-MS: An automated platform for sub-sixty second surveillance of endogenous metabolites and xenobiotics in biofluids
journal, December 2016


Construction of a Database of Collision Cross Section Values for Glycopeptides, Glycans, and Peptides Determined by IM-MS
journal, March 2017


Simultaneous Proteomic Discovery and Targeted Monitoring using Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry
journal, September 2016

  • Burnum-Johnson, Kristin E.; Nie, Song; Casey, Cameron P.
  • Molecular & Cellular Proteomics, Vol. 15, Issue 12
  • DOI: 10.1074/mcp.M116.061143

Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis
journal, August 2016

  • Gray, C. J.; Thomas, B.; Upton, R.
  • Biochimica et Biophysica Acta (BBA) - General Subjects, Vol. 1860, Issue 8
  • DOI: 10.1016/j.bbagen.2016.02.003

Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry
journal, October 2016


Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer
journal, February 2014

  • May, Jody C.; Goodwin, Cody R.; Lareau, Nichole M.
  • Analytical Chemistry, Vol. 86, Issue 4, p. 2107-2116
  • DOI: 10.1021/ac4038448

HMDB: the Human Metabolome Database
journal, January 2007

  • Wishart, D. S.; Tzur, D.; Knox, C.
  • Nucleic Acids Research, Vol. 35, Issue Database
  • DOI: 10.1093/nar/gkl923

Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses
journal, July 2011

  • Han, Xianlin; Yang, Kui; Gross, Richard W.
  • Mass Spectrometry Reviews, Vol. 31, Issue 1
  • DOI: 10.1002/mas.20342

Gridless Overtone Mobility Spectrometry
journal, October 2013

  • Zucker, Steven M.; Ewing, Michael A.; Clemmer, David E.
  • Analytical Chemistry, Vol. 85, Issue 21
  • DOI: 10.1021/ac401568r

Evaluation of Collision Cross Section Calibrants for Structural Analysis of Lipids by Traveling Wave Ion Mobility-Mass Spectrometry
journal, July 2016


GlycoMob: an ion mobility-mass spectrometry collision cross section database for glycomics
journal, August 2015

  • Struwe, Weston B.; Pagel, Kevin; Benesch, Justin L. P.
  • Glycoconjugate Journal, Vol. 33, Issue 3
  • DOI: 10.1007/s10719-015-9613-7

Estimating Collision Cross Sections of Negatively Charged N- Glycans using Traveling Wave Ion Mobility-Mass Spectrometry
journal, October 2014

  • Hofmann, Johanna; Struwe, Weston B.; Scarff, Charlotte A.
  • Analytical Chemistry, Vol. 86, Issue 21
  • DOI: 10.1021/ac5028353

Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications
journal, March 2014

  • Paglia, Giuseppe; Williams, Jonathan P.; Menikarachchi, Lochana
  • Analytical Chemistry, Vol. 86, Issue 8
  • DOI: 10.1021/ac500405x

New frontiers for mass spectrometry based upon structures for lossless ion manipulations
journal, January 2017

  • Ibrahim, Yehia M.; Hamid, Ahmed M.; Deng, Liulin
  • The Analyst, Vol. 142, Issue 7
  • DOI: 10.1039/C7AN00031F

ECMDB: The E. coli Metabolome Database
journal, October 2012

  • Guo, An Chi; Jewison, Timothy; Wilson, Michael
  • Nucleic Acids Research, Vol. 41, Issue D1
  • DOI: 10.1093/nar/gks992

Fundamentals of Trapped Ion Mobility Spectrometry
journal, October 2014

  • Michelmann, Karsten; Silveira, Joshua A.; Ridgeway, Mark E.
  • Journal of The American Society for Mass Spectrometry, Vol. 26, Issue 1
  • DOI: 10.1007/s13361-014-0999-4

Targeting the untargeted in molecular phenomics with structurally-selective ion mobility-mass spectrometry
journal, June 2016

  • May, Jody Christopher; Gant-Branum, Randi Lee; McLean, John Allen
  • Current Opinion in Biotechnology, Vol. 39
  • DOI: 10.1016/j.copbio.2016.04.013

Ion Mobility Mass Spectrometry of Peptide Ions: Effects of Drift Gas and Calibration Strategies
journal, August 2012

  • Bush, Matthew F.; Campuzano, Iain D. G.; Robinson, Carol V.
  • Analytical Chemistry, Vol. 84, Issue 16
  • DOI: 10.1021/ac3014498

Biomolecule Analysis by Ion Mobility Spectrometry
journal, July 2008


Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry
journal, August 2017


Ion mobility mass spectrometry of proteins and proteinassemblies
journal, January 2010

  • Uetrecht, Charlotte; Rose, Rebecca J.; van Duijn, Esther
  • Chem. Soc. Rev., Vol. 39, Issue 5
  • DOI: 10.1039/B914002F

Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses
journal, September 2016

  • Zheng, Xueyun; Zhang, Xing; Schocker, Nathaniel S.
  • Analytical and Bioanalytical Chemistry, Vol. 409, Issue 2
  • DOI: 10.1007/s00216-016-9866-4

The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics
journal, March 2014

  • Lanucara, Francesco; Holman, Stephen W.; Gray, Christopher J.
  • Nature Chemistry, Vol. 6, Issue 4
  • DOI: 10.1038/nchem.1889

Ion Mobility–Mass Spectrometry of Complex Carbohydrates: Collision Cross Sections of Sodiated N-linked Glycans
journal, May 2013

  • Pagel, Kevin; Harvey, David J.
  • Analytical Chemistry, Vol. 85, Issue 10
  • DOI: 10.1021/ac400403d

Ion Mobility-Derived Collision Cross Section As an Additional Measure for Lipid Fingerprinting and Identification
journal, December 2014

  • Paglia, Giuseppe; Angel, Peggi; Williams, Jonathan P.
  • Analytical Chemistry, Vol. 87, Issue 2
  • DOI: 10.1021/ac503715v

Ion Mobility Separations of Isomers based upon Long Path Length Structures for Lossless Ion Manipulations Combined with Mass Spectrometry
journal, July 2016

  • Deng, Liulin; Ibrahim, Yehia M.; Baker, Erin S.
  • ChemistrySelect, Vol. 1, Issue 10
  • DOI: 10.1002/slct.201600460

Design of a new electrospray ion mobility mass spectrometer
journal, November 2001

  • Wyttenbach, Thomas; Kemper, Paul R.; Bowers, Michael T.
  • International Journal of Mass Spectrometry, Vol. 212, Issue 1-3
  • DOI: 10.1016/S1387-3806(01)00517-6

Selected Overtone Mobility Spectrometry
journal, April 2015

  • Ewing, Michael A.; Conant, Christopher R. P.; Zucker, Steven M.
  • Analytical Chemistry, Vol. 87, Issue 10
  • DOI: 10.1021/ac504555u

YMDB: the Yeast Metabolome Database
journal, November 2011

  • Jewison, T.; Knox, C.; Neveu, V.
  • Nucleic Acids Research, Vol. 40, Issue D1
  • DOI: 10.1093/nar/gkr916

Metabolomics as a Challenging Approach for Medicinal Chemistry and Personalized Medicine
journal, June 2016

  • Frédérich, Michel; Pirotte, Bernard; Fillet, Marianne
  • Journal of Medicinal Chemistry, Vol. 59, Issue 19
  • DOI: 10.1021/acs.jmedchem.5b01335

Metabolic profiling by ion mobility mass spectrometry (IMMS)
journal, December 2007


Human metabolic individuality in biomedical and pharmaceutical research
journal, August 2011

  • Suhre, Karsten; Shin, So-Youn; Petersen, Ann-Kristin
  • Nature, Vol. 477, Issue 7362
  • DOI: 10.1038/nature10354

Revealing disease-associated pathways by network integration of untargeted metabolomics
journal, August 2016

  • Pirhaji, Leila; Milani, Pamela; Leidl, Mathias
  • Nature Methods, Vol. 13, Issue 9
  • DOI: 10.1038/nmeth.3940

Transversal Modulation Ion Mobility Spectrometry (TM-IMS), A New Mobility Filter Overcoming Turbulence Related Limitations
journal, September 2012

  • Vidal-de-Miguel, G.; Macía, M.; Cuevas, J.
  • Analytical Chemistry, Vol. 84, Issue 18
  • DOI: 10.1021/ac301127u

Bile Acid Signaling in Metabolic Disease and Drug Therapy
journal, July 2014


A multi-omic future for microbiome studies
journal, April 2016


Plasma Chromatography --A New Dimension for Gas Chromatography and Mass Spectrometry
journal, June 1970


Three-Dimensional Ion Mobility/TOFMS Analysis of Electrosprayed Biomolecules
journal, June 1998

  • Hoaglund, Cherokee S.; Valentine, Stephen J.; Sporleder, C. Ray
  • Analytical Chemistry, Vol. 70, Issue 11
  • DOI: 10.1021/ac980059c

Plant Polyphenols as Dietary Antioxidants in Human Health and Disease
journal, January 2009

  • Pandey, Kanti Bhooshan; Rizvi, Syed Ibrahim
  • Oxidative Medicine and Cellular Longevity, Vol. 2, Issue 5
  • DOI: 10.4161/oxim.2.5.9498

IMS–MS studies based on coupling a differential mobility analyzer (DMA) to commercial API–MS systems
journal, December 2010

  • Rus, Juan; Moro, David; Sillero, Juan Antonio
  • International Journal of Mass Spectrometry, Vol. 298, Issue 1-3
  • DOI: 10.1016/j.ijms.2010.05.008

Using exposomics to assess cumulative risks and promote health: Using Exposomics to Assess Cumulative Risks
journal, October 2015

  • Smith, Martyn T.; de la Rosa, Rosemarie; Daniels, Sarah I.
  • Environmental and Molecular Mutagenesis, Vol. 56, Issue 9
  • DOI: 10.1002/em.21985

High-field asymmetric waveform ion mobility spectrometry: A new tool for mass spectrometry
journal, November 2004


Development of a new ion mobility time-of-flight mass spectrometer
journal, February 2015

  • Ibrahim, Yehia M.; Baker, Erin S.; Danielson, William F.
  • International Journal of Mass Spectrometry, Vol. 377
  • DOI: 10.1016/j.ijms.2014.07.034

Collision Cross Sections of Proteins and Their Complexes: A Calibration Framework and Database for Gas-Phase Structural Biology
journal, November 2010

  • Bush, Matthew F.; Hall, Zoe; Giles, Kevin
  • Analytical Chemistry, Vol. 82, Issue 22
  • DOI: 10.1021/ac1022953

Phenomics: the next challenge
journal, November 2010

  • Houle, David; Govindaraju, Diddahally R.; Omholt, Stig
  • Nature Reviews Genetics, Vol. 11, Issue 12
  • DOI: 10.1038/nrg2897

An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument
journal, March 2007

  • Pringle, Steven D.; Giles, Kevin; Wildgoose, Jason L.
  • International Journal of Mass Spectrometry, Vol. 261, Issue 1
  • DOI: 10.1016/j.ijms.2006.07.021

Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis
journal, May 2015

  • Schymanski, Emma L.; Singer, Heinz P.; Slobodnik, Jaroslav
  • Analytical and Bioanalytical Chemistry, Vol. 407, Issue 21
  • DOI: 10.1007/s00216-015-8681-7

Ion Mobility in Clinical Analysis: Current Progress and Future Perspectives
journal, November 2015


Herbal Extracts and Phytochemicals: Plant Secondary Metabolites and the Enhancement of Human Brain function
journal, January 2011


Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go?
journal, January 2017

  • Metz, Thomas O.; Baker, Erin S.; Schymanski, Emma L.
  • Bioanalysis, Vol. 9, Issue 1
  • DOI: 10.4155/bio-2016-0244

High-Sensitivity Ion Mobility Spectrometry/Mass Spectrometry Using Electrodynamic Ion Funnel Interfaces
journal, May 2005

  • Tang, Keqi; Shvartsburg, Alexandre A.; Lee, Hak-No
  • Analytical Chemistry, Vol. 77, Issue 10, p. 3330-3339
  • DOI: 10.1021/ac048315a

Xenobiotic Metabolomics: Major Impact on the Metabolome
journal, February 2012


Metabolomics: beyond biomarkers and towards mechanisms
journal, March 2016

  • Johnson, Caroline H.; Ivanisevic, Julijana; Siuzdak, Gary
  • Nature Reviews Molecular Cell Biology, Vol. 17, Issue 7
  • DOI: 10.1038/nrm.2016.25

An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements
journal, August 2017


    Works referencing / citing this record:

    Evaluating the structural complexity of isomeric bile acids with ion mobility spectrometry
    journal, May 2019

    • Zheng, Xueyun; Smith, Francesca B.; Aly, Noor A.
    • Analytical and Bioanalytical Chemistry, Vol. 411, Issue 19
    • DOI: 10.1007/s00216-019-01869-0

    Collision cross section compendium to annotate and predict multi-omic compound identities
    journal, January 2019

    • Picache, Jaqueline A.; Rose, Bailey S.; Balinski, Andrzej
    • Chemical Science, Vol. 10, Issue 4
    • DOI: 10.1039/c8sc04396e

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.