skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Field responsive mechanical metamaterials

Abstract

Typically, mechanical metamaterial properties are programmed and set when the architecture is designed and constructed, and do not change in response to shifting environmental conditions or application requirements. Here, we present a new class of architected materials called field responsive mechanical metamaterials (FRMMs) that exhibit dynamic control and on-the-fly tunability enabled by careful design and selection of both material composition and architecture. To demonstrate the FRMM concept, we print complex structures composed of polymeric tubes infilled with magnetorheological fluid suspensions. Modulating remotely applied magnetic fields results in rapid, reversible, and sizable changes of the effective stiffness of our metamaterial motifs.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3];  [3];  [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [3]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Davis, CA (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States
  4. Univ. of California, Davis, CA (United States); Univ. of California, San Diego, CA (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1490243
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 4; Journal Issue: 12; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Jackson, Julie A., Messner, Mark C., Dudukovic, Nikola A., Smith, William L., Bekker, Logan, Moran, Bryan, Golobic, Alexandra M., Pascall, Andrew J., Duoss, Eric B., Loh, Kenneth J., and Spadaccini, Christopher M. Field responsive mechanical metamaterials. United States: N. p., 2018. Web. doi:10.1126/sciadv.aau6419.
Jackson, Julie A., Messner, Mark C., Dudukovic, Nikola A., Smith, William L., Bekker, Logan, Moran, Bryan, Golobic, Alexandra M., Pascall, Andrew J., Duoss, Eric B., Loh, Kenneth J., & Spadaccini, Christopher M. Field responsive mechanical metamaterials. United States. doi:10.1126/sciadv.aau6419.
Jackson, Julie A., Messner, Mark C., Dudukovic, Nikola A., Smith, William L., Bekker, Logan, Moran, Bryan, Golobic, Alexandra M., Pascall, Andrew J., Duoss, Eric B., Loh, Kenneth J., and Spadaccini, Christopher M. Fri . "Field responsive mechanical metamaterials". United States. doi:10.1126/sciadv.aau6419. https://www.osti.gov/servlets/purl/1490243.
@article{osti_1490243,
title = {Field responsive mechanical metamaterials},
author = {Jackson, Julie A. and Messner, Mark C. and Dudukovic, Nikola A. and Smith, William L. and Bekker, Logan and Moran, Bryan and Golobic, Alexandra M. and Pascall, Andrew J. and Duoss, Eric B. and Loh, Kenneth J. and Spadaccini, Christopher M.},
abstractNote = {Typically, mechanical metamaterial properties are programmed and set when the architecture is designed and constructed, and do not change in response to shifting environmental conditions or application requirements. Here, we present a new class of architected materials called field responsive mechanical metamaterials (FRMMs) that exhibit dynamic control and on-the-fly tunability enabled by careful design and selection of both material composition and architecture. To demonstrate the FRMM concept, we print complex structures composed of polymeric tubes infilled with magnetorheological fluid suspensions. Modulating remotely applied magnetic fields results in rapid, reversible, and sizable changes of the effective stiffness of our metamaterial motifs.},
doi = {10.1126/sciadv.aau6419},
journal = {Science Advances},
number = 12,
volume = 4,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Structure onset and rheological tests of magnetorheological (MR) fluids in response to applied magnetic field. (A) Optical image of the MR fluid forming a liquid pool on a planar substrate in the absence of magnetic field. (B) Optical image of the MR fluid forming ordered, blade-like columns inmore » the presence of magnetic field. (C) Rheological plot of the MR fluid’s relative steady state viscosity, which increases with increasing applied magnetic field strength. The field-off steady-state viscosity is 140 cP. (D) Rheological plot demonstrating the response time of the MR fluid at various magnetic field strengths.« less

Save / Share:

Works referenced in this record:

3D-Printed Mechanochromic Materials
journal, December 2014

  • Peterson, Gregory I.; Larsen, Michael B.; Ganter, Mark A.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 1
  • DOI: 10.1021/am506745m

Shape-morphing composites with designed micro-architectures
journal, June 2016

  • Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep27933

Biomimetic 4D printing
journal, January 2016

  • Sydney Gladman, A.; Matsumoto, Elisabetta A.; Nuzzo, Ralph G.
  • Nature Materials, Vol. 15, Issue 4
  • DOI: 10.1038/nmat4544

Biomechanics of cellular solids
journal, March 2005


Commercial Magneto-Rheological Fluid Devices
journal, October 1996

  • Carlson, J. D.; Catanzarite, D. M.; St. Clair, K. A.
  • International Journal of Modern Physics B, Vol. 10, Issue 23n24
  • DOI: 10.1142/S0217979296001306

Magnetoactive Acoustic Metamaterials
journal, April 2018

  • Yu, Kunhao; Fang, Nicholas X.; Huang, Guoliang
  • Advanced Materials, Vol. 30, Issue 21
  • DOI: 10.1002/adma.201706348

Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion
journal, October 2016


Fabrication and deformation of three-dimensional hollow ceramic nanostructures
journal, September 2013

  • Jang, Dongchan; Meza, Lucas R.; Greer, Frank
  • Nature Materials, Vol. 12, Issue 10
  • DOI: 10.1038/nmat3738

Resilient 3D hierarchical architected metamaterials
journal, September 2015

  • Meza, Lucas R.; Zelhofer, Alex J.; Clarke, Nigel
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 37
  • DOI: 10.1073/pnas.1509120112

Optimal lattice-structured materials
journal, November 2016


Softening of Rubber by Deformation
journal, March 1969

  • Mullins, L.
  • Rubber Chemistry and Technology, Vol. 42, Issue 1
  • DOI: 10.5254/1.3539210

Ultralight, ultrastiff mechanical metamaterials
journal, June 2014


Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography
journal, April 2012

  • Bückmann, Tiemo; Stenger, Nicolas; Kadic, Muamer
  • Advanced Materials, Vol. 24, Issue 20
  • DOI: 10.1002/adma.201200584

Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion
journal, October 2016

  • Xu, Hang; Pasini, Damiano
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep34924

Smart composites with controlled anisotropy
journal, August 2005


Additive Manufacturing and size-dependent mechanical properties of three-dimensional microarchitected, high-temperature ceramic metamaterials
journal, February 2018

  • Cui, Huachen; Hensleigh, Ryan; Chen, Hongshun
  • Journal of Materials Research, Vol. 33, Issue 3
  • DOI: 10.1557/jmr.2018.11

MR fluid, foam and elastomer devices
journal, June 2000


Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents
journal, January 2017

  • Qu, Jingyuan; Kadic, Muamer; Naber, Andreas
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep40643

Multiscale metallic metamaterials
journal, July 2016

  • Zheng, Xiaoyu; Smith, William; Jackson, Julie
  • Nature Materials, Vol. 15, Issue 10
  • DOI: 10.1038/nmat4694

Harnessing Buckling to Design Architected Materials that Exhibit Effective Negative Swelling
journal, May 2016


3D Soft Metamaterials with Negative Poisson's Ratio
journal, July 2013

  • Babaee, Sahab; Shim, Jongmin; Weaver, James C.
  • Advanced Materials, Vol. 25, Issue 36
  • DOI: 10.1002/adma.201301986

An elasto-mechanical unfeelability cloak made of pentamode metamaterials
journal, June 2014

  • Bückmann, T.; Thiel, M.; Kadic, M.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5130

The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer
journal, June 2012


Materials with structural hierarchy
journal, February 1993


Strong, lightweight, and recoverable three-dimensional ceramic nanolattices
journal, September 2014


Active materials by four-dimension printing
journal, September 2013

  • Ge, Qi; Qi, H. Jerry; Dunn, Martin L.
  • Applied Physics Letters, Vol. 103, Issue 13
  • DOI: 10.1063/1.4819837

From Stochastic Foam to Designed Structure: Balancing Cost and Performance of Cellular Metals
journal, August 2017

  • Lehmhus, Dirk; Vesenjak, Matej; Schampheleire, Sven
  • Materials, Vol. 10, Issue 8
  • DOI: 10.3390/ma10080922

A model of the behaviour of magnetorheological materials
journal, October 1996

  • Jolly, Mark R.; Carlson, J. David; Muñoz, Beth C.
  • Smart Materials and Structures, Vol. 5, Issue 5
  • DOI: 10.1088/0964-1726/5/5/009

Cellular Metals Manufacturing
journal, October 2002


Vector Equilibrium Synergy
journal, June 1985


Multimaterial 4D Printing with Tailorable Shape Memory Polymers
journal, August 2016

  • Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep31110

Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves
journal, June 2018


The Response Time of a Magnetorheological Fluid Squeeze Film Damper Rotor System
journal, March 2007


First jump of microgel; actuation speed enhancement by elastic instability
journal, January 2010

  • Lee, Howon; Xia, Chunguang; Fang, Nicholas X.
  • Soft Matter, Vol. 6, Issue 18
  • DOI: 10.1039/c0sm00092b

Reentrant Origami-Based Metamaterials with Negative Poisson’s Ratio and Bistability
journal, May 2015


Ultralight Metallic Microlattices
journal, November 2011


Transient response of magnetorheological fluids: Shear flow between concentric cylinders
journal, January 2005

  • Ulicny, John C.; Golden, Mark A.; Namuduri, Chandra S.
  • Journal of Rheology, Vol. 49, Issue 1
  • DOI: 10.1122/1.1803576

A comprehensive analysis of the response time of MR dampers
journal, January 2006

  • Koo, Jeong-Hoi; Goncalves, Fernando D.; Ahmadian, Mehdi
  • Smart Materials and Structures, Vol. 15, Issue 2
  • DOI: 10.1088/0964-1726/15/2/015

Flexible mechanical metamaterials
journal, October 2017

  • Bertoldi, Katia; Vitelli, Vincenzo; Christensen, Johan
  • Nature Reviews Materials, Vol. 2, Issue 11
  • DOI: 10.1038/natrevmats.2017.66

Printing ferromagnetic domains for untethered fast-transforming soft materials
journal, June 2018


Reexamining the mechanical property space of three-dimensional lattice architectures
journal, November 2017


Highly compressible 3D periodic graphene aerogel microlattices
journal, April 2015

  • Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7962

Bioinspired structural materials
journal, October 2014

  • Wegst, Ulrike G. K.; Bai, Hao; Saiz, Eduardo
  • Nature Materials, Vol. 14, Issue 1
  • DOI: 10.1038/nmat4089

Hierarchical Auxetic Mechanical Metamaterials
journal, February 2015

  • Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08395

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.